Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 903: 166577, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37633374

ABSTRACT

Southern Ocean organisms are considered particularly vulnerable to Ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. It is also generally assumed that OA would affect calcifying animals more than non-calcifying animals. In this context, we aimed to study the impact of reduced pH on both types of species: the ascidian Cnemidocarpa verrucosa sp. A, and the bivalve Aequiyoldia eightsii, from an Antarctic fjord. We used gene expression profiling and enzyme activity to study the responses of these two Antarctic benthic species to OA. We report the results of an experiment lasting 66 days, comparing the molecular mechanisms underlying responses under two pCO2 treatments (ambient and elevated pCO2). We observed 224 up-regulated and 111 down-regulated genes (FC ≥ 2; p-value ≤ 0.05) in the ascidian. In particular, the decrease in pH caused an upregulation of genes involved in the immune system and antioxidant response. While fewer differentially expressed (DE) genes were observed in the infaunal bivalve, 34 genes were up-regulated, and 69 genes were downregulated (FC ≥ 2; p-value ≤ 0.05) in response to OA. We found downregulated genes involved in the oxidoreductase pathway (such as glucose dehydrogenase and trimethyl lysine dioxygenase), while the heat shock protein 70 was up-regulated. This work addresses the effect of OA in two common, widely distributed Antarctic species, showing striking results. Our major finding highlights the impact of OA on the non-calcifying species, a result that differ from the general trend, which describes a higher impact on calcifying species. This calls for discussion of potential effects on non-calcifying species, such as ascidians, a diverse and abundant group that form extended three-dimensional clusters in shallow waters and shelf areas in the Southern Ocean.

2.
Mar Environ Res ; 170: 105430, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34340030

ABSTRACT

Benthic organisms of the Southern Ocean are particularly vulnerable to ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. OA most strongly affects animals with calcium carbonate skeletons or shells, such as corals and mollusks. We exposed the abundant cold-water coral Malacobelemnon daytoni from an Antarctic fjord to low pH seawater (LpH) (7.68 ± 0.17) to test its physiological responses to OA, at the level of gene expression (RT-PCR) and enzyme activity. Corals were exposed in short- (3 days) and long-term (54 days) experiments to two pCO2 conditions (ambient and elevated pCO2 equaling RCP 8.5, IPCC 2019, approximately 372.53 and 956.78 µatm, respectively). Of the eleven genes studied through RT-PCR, six were significantly upregulated compared with control in the short-term in the LpH condition, including the antioxidant enzyme superoxide dismutase (SOD), Heat Shock Protein 70 (HSP70), Toll-like receptor (TLR), galaxin and ferritin. After long-term exposure to low pH conditions, RT-PCR analysis showed seven genes were upregulated. These include the mannose-binding C-Lectin and HSP90. Also, the expression of TLR and galaxin, among others, continued to be upregulated after long-term exposure to LpH. Expression of carbonic anhydrase (CA), a key enzyme involved in calcification, was also significantly upregulated after long-term exposure. Our results indicated that, after two months, M. daytoni is not acclimatized to this experimental LpH condition. Gene expression profiles revealed molecular impacts that were not evident at the enzyme activity level. Consequently, understanding the molecular mechanisms behind the physiological processes in the response of a coral to LpH is critical to understanding the ability of polar species to cope with future environmental changes. Approaches integrating molecular tools into Antarctic ecological and/or conservation research make an essential contribution given the current ongoing OA processes.


Subject(s)
Anthozoa , Animals , Antarctic Regions , Anthozoa/genetics , Carbon Dioxide/toxicity , Coral Reefs , Hydrogen-Ion Concentration , Oceans and Seas , Seawater
3.
Mar Pollut Bull ; 166: 112218, 2021 May.
Article in English | MEDLINE | ID: mdl-33721687

ABSTRACT

Ocean acidification (OA) could become a serious threat for the Antarctic marine ecosystem over coming years, as the solubility of atmospheric CO2 and CaCO3 minerals increases at lower temperatures. We evaluated the effect of OA on the stress response of the limpet Nacella concinna by measuring gene expression levels. The experiment was performed with the two ecotypes (Littoral and Sublittoral) of the species during 54 days (IPCC, 2019 scenario RCP8.5; control, ~375 ppm; low-pH treatment, ~923 ppm). Exposure to low-pH treatment during 15 days triggered the down-regulation of two heat-shock protein genes (HSP70A, HSP70B) only in sublittoral individuals. Little variation in the relative expression values of all genes in both ecotypes was observed probably, due to a historical exposure to the substantial daily natural pH fluctuations recorded in the study area during the experiment. This study provides relevant baseline data for future OA experiments on coastal species in Antarctica.


Subject(s)
Ecosystem , Ecotype , Animals , Antarctic Regions , Humans , Hydrogen-Ion Concentration , Oceans and Seas , Seawater
4.
Mar Environ Res ; 130: 264-274, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28844394

ABSTRACT

Antarctic ecosystems present highly marked seasonal patterns in energy input, which in turn determines the biology and ecology of marine invertebrate species. This relationship is stronger at lower levels of the food web, while upper levels may be less dependent on primary production pulses. The pennatulid Malacobelemnon daytoni, is one of the most abundant species in Potter Cove, Antarctica. In order to assess its trophic ecology and energetic strategies, its biochemical (carbohydrates, proteins and lipids), Fatty Acid (FA) and Stable Isotope (SI) (δ15N and δ13C) compositions were studied over a year-round period. The FA and SI profiles suggest an omnivorous diet and opportunistic feeding strategy for the species. These results, together with biochemical analysis (higher lipid and carbohydrate concentration observed in July and October 2009), support the hypothesis that resuspension events may be an important source of energy, reducing the seasonality of food depletion periods in winter. The evidence presented here gives us a better insight into the success that this species has in Potter Cove and under the current environmental changes experienced by the Antarctic Peninsula.


Subject(s)
Anthozoa , Ecology , Food Chain , Animals , Antarctic Regions , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...