Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Protoc Bioinformatics ; 60: 11.16.1-11.16.32, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29220078

ABSTRACT

Next-generation sequencing has produced petabytes of data, but accessing and analyzing these data remain challenging. Traditionally, researchers investigating public datasets like The Cancer Genome Atlas (TCGA) would download the data to a high-performance cluster, which could take several weeks even with a highly optimized network connection. The National Cancer Institute (NCI) initiated the Cancer Genomics Cloud Pilots program to provide researchers with the resources to process data with cloud computational resources. We present protocols using one of these Cloud Pilots, the Seven Bridges Cancer Genomics Cloud (CGC), to find and query public datasets, bring your own data to the CGC, analyze data using standard or custom workflows, and benchmark tools for accuracy with interactive analysis features. These protocols demonstrate that the CGC is a data-analysis ecosystem that fully empowers researchers with a variety of areas of expertise and interests to collaborate in the analysis of petabytes of data. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Databases, Genetic/statistics & numerical data , Neoplasms/genetics , Cloud Computing , Computational Biology , Data Interpretation, Statistical , Genomics , High-Throughput Nucleotide Sequencing , Humans , Metadata , Pilot Projects
2.
Int J Radiat Oncol Biol Phys ; 91(1): 82-90, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25442345

ABSTRACT

PURPOSE: The shape of the ionizing radiation response curve at very low doses has been the subject of considerable debate. Linear-no-threshold (LNT) models are widely used to estimate risks associated with low-dose exposures. However, the low-dose hyperradiosensitivity (HRS) phenomenon, in which cells are especially sensitive at low doses but then show increased radioresistance at higher doses, provides evidence of nonlinearity in the low-dose region. HRS is more prominent in the G2 phase of the cell cycle than in the G0/G1 or S phases. Here we provide the first cytogenetic mechanistic evidence of low-dose HRS in human peripheral blood lymphocytes using structural chromosomal aberrations. METHODS AND MATERIALS: Human peripheral blood lymphocytes from 2 normal healthy female donors were acutely exposed to cobalt 60 γ rays in either G0 or G2 using closely spaced doses ranging from 0 to 1.5 Gy. Structural chromosomal aberrations were enumerated, and the slopes of the regression lines at low doses (0-0.4 Gy) were compared with doses of 0.5 Gy and above. RESULTS: HRS was clearly evident in both donors for cells irradiated in G2. No HRS was observed in cells irradiated in G0. The radiation effect per unit dose was 2.5- to 3.5-fold higher for doses ≤0.4 Gy than for doses >0.5 Gy. CONCLUSIONS: These data provide the first cytogenetic evidence for the existence of HRS in human cells irradiated in G2 and suggest that LNT models may not always be optimal for making radiation risk assessments at low doses.


Subject(s)
Chromosome Aberrations , G2 Phase/radiation effects , Gamma Rays , Lymphocytes/radiation effects , Radiation Tolerance/genetics , Adult , Cobalt Radioisotopes , Cytogenetic Analysis , Dose-Response Relationship, Radiation , Female , G2 Phase/genetics , Humans , Resting Phase, Cell Cycle/radiation effects
3.
PLoS One ; 9(6): e98947, 2014.
Article in English | MEDLINE | ID: mdl-24896095

ABSTRACT

Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.


Subject(s)
Bystander Effect/radiation effects , Neutrons , Cell Line , Cell Nucleus Division/radiation effects , Cobalt Radioisotopes , DNA Damage , Humans , Micronuclei, Chromosome-Defective/radiation effects , Micronucleus Tests/methods , Photons , Relative Biological Effectiveness
4.
Mutagenesis ; 28(4): 433-40, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23702692

ABSTRACT

Micronuclei have been used extensively in studies as an easily evaluated indicator of DNA damage but little is known about their association with other types of damage such as nucleoplasmic bridges and nuclear buds. Here, radiation-induced clastogenic events were evaluated via the cytokinesis-block micronucleus assay in two normal human lymphoblastoid cell lines exposed to neutrons or γ-radiation. DNA damage induced by the chemical agents mitomycin C and phleomycin was also evaluated in two normal and two mitochondrial mutant human lymphoblastoid cell lines. In addition to micronuclei, nucleoplasmic bridges and nuclear buds were enumerated by recording the coincident presence of these end points within individual cells, and the associations among these three end points were evaluated for all treatment conditions. The common odds ratios for micronuclei and nucleoplasmic bridges were found to be significantly larger than unity, indicating that the presence of one or more micronuclei in a cell imposes a significant risk of having one or more nucleoplasmic bridges in that same cell, and vice versa. The strength of this association did not change significantly with radiation dose or concentration of the chemical clastogens. Common odds ratios for association between micronuclei and buds, and between bridges and buds were also found to be significantly higher than unity. However, associations between micronuclei and buds could not be calculated for some treatments due to heterogeneity in the odds ratios and hence may depend on chemical clastogen concentration or radiation dose. This study provides evidence of how paired analyses among genetic end points in the cytokinesis-block micronucleus assay can provide information concerning abnormalities of cell division and possibly about structural chromosomal rearrangements induced by clastogens.


Subject(s)
DNA Damage , Micronuclei, Chromosome-Defective , Micronucleus Tests , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/genetics , Cell Nucleus/radiation effects , DNA Damage/drug effects , DNA Damage/radiation effects , Gamma Rays/adverse effects , Humans , Micronuclei, Chromosome-Defective/chemically induced , Micronuclei, Chromosome-Defective/radiation effects , Micronucleus Tests/methods , Mitomycin/toxicity , Neutrons/adverse effects , Odds Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...