Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
2.
NPJ Precis Oncol ; 8(1): 87, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589664

ABSTRACT

Homologous recombination (HR) and nucleotide excision repair (NER) are the two most frequently disabled DNA repair pathways in cancer. HR-deficient breast, ovarian, pancreatic and prostate cancers respond well to platinum chemotherapy and PARP inhibitors. However, the frequency of HR deficiency in gastric and esophageal adenocarcinoma (GEA) still lacks diagnostic and functional validation. Using whole exome and genome sequencing data, we found that a significant subset of GEA, but very few colorectal adenocarcinomas, show evidence of HR deficiency by mutational signature analysis (HRD score). High HRD gastric cancer cell lines demonstrated functional HR deficiency by RAD51 foci assay and increased sensitivity to platinum chemotherapy and PARP inhibitors. Of clinical relevance, analysis of three different GEA patient cohorts demonstrated that platinum treated HR deficient cancers had better outcomes. A gastric cancer cell line with strong sensitivity to cisplatin showed HR proficiency but exhibited NER deficiency by two photoproduct repair assays. Single-cell RNA-sequencing revealed that, in addition to inducing apoptosis, cisplatin treatment triggered ferroptosis in a NER-deficient gastric cancer, validated by intracellular GSH assay. Overall, our study provides preclinical evidence that a subset of GEAs harbor genomic features of HR and NER deficiency and may therefore benefit from platinum chemotherapy and PARP inhibitors.

3.
Gut ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621923

ABSTRACT

OBJECTIVE: Genomic studies of gastric cancer have identified highly recurrent genomic alterations impacting RHO signalling, especially in the diffuse gastric cancer (DGC) histological subtype. Among these alterations are interchromosomal translations leading to the fusion of the adhesion protein CLDN18 and RHO regulator ARHGAP26. It remains unclear how these fusion constructs impact the activity of the RHO pathway and what is their broader impact on gastric cancer development. Herein, we developed a model to allow us to study the function of this fusion protein in the pathogenesis of DGC and to identify potential therapeutic targets for DGC tumours with these alterations. DESIGN: We built a transgenic mouse model with LSL-CLDN18-ARHGAP26 fusion engineered into the Col1A1 locus where its expression can be induced by Cre recombinase. Using organoids generated from this model, we evaluated its oncogenic activity and the biochemical effects of the fusion protein on the RHOA pathway and its downstream cell biological effects in the pathogenesis of DGC. RESULTS: We demonstrated that induction of CLDN18-ARHGAP26 expression in gastric organoids induced the formation of signet ring cells, characteristic features of DGC and was able to cooperatively transform gastric cells when combined with the loss of the tumour suppressor geneTrp53. CLDN18-ARHGAP26 promotes the activation of RHOA and downstream effector signalling. Molecularly, the fusion promotes activation of the focal adhesion kinase (FAK) and induction of the YAP pathway. A combination of FAK and YAP/TEAD inhibition can significantly block tumour growth. CONCLUSION: These results indicate that the CLDN18-ARHGAP26 fusion is a gain-of-function DGC oncogene that leads to activation of RHOA and activation of FAK and YAP signalling. These results argue for further evaluation of emerging FAK and YAP-TEAD inhibitors for these deadly cancers.

4.
Nat Commun ; 15(1): 2230, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472198

ABSTRACT

Aberrant stem cell-like activity and impaired differentiation are central to the development of colorectal cancer (CRC). To identify functional mediators of these key cellular programs, we engineer a dual endogenous reporter system by genome-editing the SOX9 and KRT20 loci of human CRC cell lines to express fluorescent reporters, broadcasting aberrant stem cell-like and differentiation activity, respectively. By applying a CRISPR screen targeting 78 epigenetic regulators with 542 sgRNAs to this platform, we identify factors that contribute to stem cell-like activity and differentiation in CRC. Perturbation single cell RNA sequencing (Perturb-seq) of validated hits nominate SMARCB1 of the BAF complex (also known as SWI/SNF) as a negative regulator of differentiation across an array of neoplastic colon models. SMARCB1 is a dependency and required for in vivo growth of human CRC models. These studies highlight the utility of biologically designed endogenous reporter platforms to uncover regulators with therapeutic potential.


Subject(s)
Colorectal Neoplasms , RNA, Guide, CRISPR-Cas Systems , Humans , Cell Differentiation/genetics , Stem Cells/metabolism , Colorectal Neoplasms/genetics
5.
Clin Cancer Res ; 30(8): 1669-1684, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38345769

ABSTRACT

PURPOSE: ERBB2-amplified colorectal cancer is a distinct molecular subtype with expanding treatments. Implications of concurrent oncogenic RAS/RAF alterations are not known. EXPERIMENTAL DESIGN: Dana-Farber and Foundation Medicine Inc. Colorectal cancer cohorts with genomic profiling were used to identify ERBB2-amplified cases [Dana-Farber, n = 47/2,729 (1.7%); FMI, n = 1857/49,839 (3.7%)]. Outcomes of patients receiving HER2-directed therapies are reported (Dana-Farber, n = 9; Flatiron Health-Foundation Medicine clinicogenomic database, FH-FMI CGDB, n = 38). Multisite HER2 IHC and genomic profiling were performed to understand HER2 intratumoral and interlesional heterogeneity. The impact of concurrent RAS comutations on the effectiveness of HER2-directed therapies were studied in isogenic colorectal cancer cell lines and xenografts. RESULTS: ERBB2 amplifications are enriched in left-sided colorectal cancer. Twenty percent of ERBB2-amplified colorectal cancers have co-occurring oncogenic RAS/RAF alterations. While RAS/RAF WT colorectal cancers typically have clonal ERBB2 amplification, colorectal cancers with co-occurring RAS/RAF alterations have lower level ERRB2 amplification, higher intratumoral heterogeneity, and interlesional ERBB2 discordance. These distinct genomic patterns lead to differential responsiveness and patterns of resistance to HER2-directed therapy. ERBB2-amplified colorectal cancer with RAS/RAF alterations are resistant to trastuzumab-based combinations, such as trastuzumab/tucatinib, but retain sensitivity to trastuzumab deruxtecan in in vitro and murine models. Trastuzumab deruxtecan shows clinical efficacy in cases with high-level ERBB2-amplified RAS/RAF coaltered colorectal cancer. CONCLUSIONS: Co-occurring RAS/RAF alterations define a unique subtype of ERBB2-amplified colorectal cancer that has increased intratumoral heterogeneity, interlesional discordance, and resistance to trastuzumab-based combinations. Further examination of trastuzumab deruxtecan in this previously understudied cohort of ERBB2-amplified colorectal cancer is warranted.


Subject(s)
Colorectal Neoplasms , DNA Copy Number Variations , Humans , Animals , Mice , Gene Amplification , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Treatment Outcome , Mutation
6.
bioRxiv ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38293113

ABSTRACT

Aberrant stem cell-like activity and impaired differentiation are central to the development of colorectal cancer (CRC). To identify functional mediators that regulate these key cellular programs in CRC, we developed an endogenous reporter system by genome-editing human CRC cell lines with knock-in fluorescent reporters at the SOX9 and KRT20 locus to report aberrant stem cell-like activity and differentiation, respectively, and then performed pooled genetic perturbation screens. Constructing a dual reporter system that simultaneously monitored aberrant stem cell-like and differentiation activity in the same CRC cell line improved our signal to noise discrimination. Using a focused-library CRISPR screen targeting 78 epigenetic regulators with 542 sgRNAs, we identified factors that contribute to stem cell-like activity and differentiation in CRC. Perturbation single cell RNA sequencing (Perturb-seq) of validated hits nominated SMARCB1 of the BAF complex (also known as SWI/SNF) as a negative regulator of differentiation across an array of neoplastic colon models. SMARCB1 is a dependency in CRC and required for in vivo growth of human CRC models. These studies highlight the utility of a biologically designed endogenous reporter system to uncover novel therapeutic targets for drug development.

7.
iScience ; 26(11): 108169, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37965133

ABSTRACT

Gastroesophageal adenocarcinoma (GEA) is an aggressive malignancy with chromosomal instability (CIN). To understand adaptive responses enabling DNA damage response (DDR) and CIN, we analyzed matched normal, premalignant, and malignant gastric lesions from human specimens and a carcinogen-induced mouse model, observing activation of replication stress, DDR, and p21 in neoplastic progression. In GEA cell lines, expression of DDR markers correlated with ploidy abnormalities, such as number of high-level focal amplifications and whole-genome duplication (WGD). Integrating TP53 status, ploidy abnormalities, and DDR markers into a compositive score helped predict GEA cell lines with enhanced sensitivity to Chk1/2 and Wee1 inhibition, either alone or combined with irinotecan (SN38). We demonstrate that Chk1/2 or Wee1 inhibition combined with SN38/irinotecan shows greater anti-tumor activity in human gastric cancer organoids and an in vivo xenograft mouse model. These findings indicate that specific DDR biomarkers and ploidy abnormalities may predict premalignant progression and response to DDR pathway inhibitors.

8.
Sci Rep ; 13(1): 20567, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996508

ABSTRACT

Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Functional assays showed NER deficiency in ccRCC cells. Some cell lines showed irofulven sensitivity at a concentration that is well tolerated by patients. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. ccRCC cell line-based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Sesquiterpenes , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , DNA Repair , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , DNA Damage , Ultraviolet Rays , Xeroderma Pigmentosum Group D Protein/genetics
9.
bioRxiv ; 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37034740

ABSTRACT

Gastroesophageal adenocarcinoma (GEA) is an aggressive, often lethal, malignancy that displays marked chromosomal instability (CIN). To understand adaptive responses that enable CIN, we analyzed paired normal, premalignant, and malignant gastric lesions from human specimens and a carcinogen-induced mouse model, observing activation of replication stress, DNA damage response (DDR), and cell cycle regulator p21 in neoplastic progression. In GEA cell lines, expression of DDR markers correlated with ploidy abnormalities, including high-level focal amplifications and whole-genome duplication (WGD). Moreover, high expression of DNA damage marker H2AX correlated with CIN, WGD, and inferior patient survival. By developing and implementing a composite diagnostic score that incorporates TP53 mutation status, ploidy abnormalities, and H2AX expression, among other genomic information, we can identify GEA cell lines with enhanced sensitivity to DDR pathway inhibitors targeting Chk1/2 and Wee1. Anti-tumor properties were further augmented in combination with irinotecan (SN38) but not gemcitabine chemotherapy. These results implicate specific DDR biomarkers and ploidy abnormalities as diagnostic proxy that may predict premalignant progression and response to DDR pathway inhibitors.

10.
Sci Adv ; 9(13): eadf0927, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36989360

ABSTRACT

Cell state plasticity is carefully regulated in adult epithelia to prevent cancer. The aberrant expansion of the normally restricted capability for cell state plasticity in neoplasia is poorly defined. Using genetically engineered and carcinogen-induced mouse models of intestinal neoplasia, we observed that impaired differentiation is a conserved event preceding cancer development. Single-cell RNA sequencing (scRNA-seq) of premalignant lesions from mouse models and a patient with hereditary polyposis revealed that cancer initiates by adopting an aberrant transcriptional state characterized by regenerative activity, marked by Ly6a (Sca-1), and reactivation of fetal intestinal genes, including Tacstd2 (Trop2). Genetic inactivation of Sox9 prevented adenoma formation, obstructed the emergence of regenerative and fetal programs, and restored multilineage differentiation by scRNA-seq. Expanded chromatin accessibility at regeneration and fetal genes upon Apc inactivation was reduced by concomitant Sox9 suppression. These studies indicate that aberrant cell state plasticity mediated by unabated regenerative activity and developmental reprogramming precedes cancer development.


Subject(s)
Adenoma , Colorectal Neoplasms , Mice , Animals , Intestines , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cell Differentiation , Adenoma/genetics , Adenoma/pathology
11.
bioRxiv ; 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36798363

ABSTRACT

Purpose: Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. Experimental Design: We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Results: Functional assays showed NER deficiency in ccRCC cells. Irofulven sensitivity increased in some cell lines. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. Conclusions: ccRCC cell line based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.

12.
Nat Commun ; 14(1): 110, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36611031

ABSTRACT

Inflammation has long been recognized to contribute to cancer development, particularly across the gastrointestinal tract. Patients with inflammatory bowel disease have an increased risk for bowel cancers, and it has been posited that a field of genetic changes may underlie this risk. Here, we define the clinical features, genomic landscape, and germline alterations in 174 patients with colitis-associated cancers and sequenced 29 synchronous or isolated dysplasia. TP53 alterations, an early and highly recurrent event in colitis-associated cancers, occur in half of dysplasia, largely as convergent evolution of independent events. Wnt pathway alterations are infrequent, and our data suggest transcriptional rewiring away from Wnt. Sequencing of multiple dysplasia/cancer lesions from mouse models and patients demonstrates rare shared alterations between lesions. These findings suggest neoplastic bowel lesions developing in a background of inflammation experience lineage plasticity away from Wnt activation early during tumorigenesis and largely occur as genetically independent events.


Subject(s)
Colitis-Associated Neoplasms , Inflammatory Bowel Diseases , Animals , Mice , Inflammatory Bowel Diseases/genetics , Genomics , Hyperplasia , Inflammation/complications , Inflammation/genetics , Evolution, Molecular
13.
JCO Precis Oncol ; 7: e2200342, 2023 01.
Article in English | MEDLINE | ID: mdl-36634297

ABSTRACT

PURPOSE: With the growing number of available targeted therapeutics and molecular biomarkers, the optimal care of patients with cancer now depends on a comprehensive understanding of the rapidly evolving landscape of precision oncology, which can be challenging for oncologists to navigate alone. METHODS: We developed and implemented a precision oncology decision support system, GI TARGET, (Gastrointestinal Treatment Assistance Regarding Genomic Evaluation of Tumors) within the Gastrointestinal Cancer Center at the Dana-Farber Cancer Institute. With a multidisciplinary team, we systematically reviewed tumor molecular profiling for GI tumors and provided molecularly informed clinical recommendations, which included identifying appropriate clinical trials aided by the computational matching platform MatchMiner, suggesting targeted therapy options on or off the US Food and Drug Administration-approved label, and consideration of additional or orthogonal molecular testing. RESULTS: We reviewed genomic data and provided clinical recommendations for 506 patients with GI cancer who underwent tumor molecular profiling between January and June 2019 and determined follow-up using the electronic health record. Summary reports were provided to 19 medical oncologists for patients with colorectal (n = 198, 39%), pancreatic (n = 124, 24%), esophagogastric (n = 67, 13%), biliary (n = 40, 8%), and other GI cancers. We recommended ≥ 1 precision medicine clinical trial for 80% (406 of 506) of patients, leading to 24 enrollments. We recommended on-label and off-label targeted therapies for 6% (28 of 506) and 25% (125 of 506) of patients, respectively. Recommendations for additional or orthogonal testing were made for 42% (211 of 506) of patients. CONCLUSION: The integration of precision medicine in routine cancer care through a dedicated multidisciplinary molecular tumor board is scalable and sustainable, and implementation of precision oncology recommendations has clinical utility for patients with cancer.


Subject(s)
Gastrointestinal Neoplasms , Precision Medicine , Humans , Medical Oncology , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/therapy , Genomics , Molecular Diagnostic Techniques
14.
Clin Cancer Res ; 29(1): 197-208, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36278961

ABSTRACT

PURPOSE: Diffuse gastric cancer (DGC) is an aggressive and frequently lethal subtype of gastric cancer. Because DGC often lacks genomic aberrations that indicate clear candidate therapeutic targets, it has been challenging to develop targeted therapies for this gastric cancer subtype. Our previous study highlighted the contribution of focal adhesion kinase (FAK) in the tumorigenesis of DGC and the potential efficacy of small-molecule FAK inhibitors. However, drug resistance to monotherapy often hinders the efficacy of treatment. EXPERIMENTAL DESIGN: We generated a genome-scale library of open reading frames (ORF) in the DGC model of Cdh1-/-RHOAY42C/+ organoids to identify candidate mechanisms of resistance to FAK inhibition. Compensatory activated pathways were also detected following treatment with FAK inhibitors. Candidates were investigated by cotargeting in vitro and in vivo experiments using DGC. RESULTS: We found that cyclin-dependent kinase 6 (CDK6) promoted FAK inhibitor resistance in ORF screen. In addition, FAK inhibitor treatment in DGC models led to compensatory MAPK pathway activation. Small-molecule CDK4/6 inhibitors or MAPK inhibitors effectively enhanced FAK inhibitor efficacy in vitro and in vivo. CONCLUSIONS: Our data suggest that FAK inhibitors combined with MAPK inhibitors or CDK4/6 inhibitors warrant further testing in clinical trials for DGC.


Subject(s)
Stomach Neoplasms , Humans , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
15.
Cancers (Basel) ; 14(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36551707

ABSTRACT

The aggressive biology of pancreatic ductal adenocarcinoma (PDAC), along with its limited sensitivity to many systemic therapies, presents a major challenge in the management of patients with metastatic PDAC. Over the past decade, the incorporation of combinatorial cytotoxic chemotherapy regimens has improved patient outcomes. Despite these advances, resistance to cytotoxic chemotherapy inevitably occurs, and there is a great need for effective therapies. A major focus of research has been to identify molecularly defined subpopulations of patients with PDAC who may benefit from targeted therapies that are matched to their molecular profile. Recent successes include the demonstration of the efficacy of maintenance PARP inhibition in PDAC tumors harboring deleterious BRCA1, BRCA2, and PALB2 alterations. In addition, while therapeutic targeting of KRAS was long thought to be infeasible, emerging data on the efficacy of KRAS G12C inhibitors have increased optimism about next-generation KRAS-directed therapies in PDAC. Meanwhile, KRAS wild-type PDAC encompasses a unique molecular subpopulation of PDAC that is enriched for targetable genetic alterations, such as oncogenic BRAF alterations, mismatch repair deficiency, and FGFR2, ALK, NTRK, ROS1, NRG1, and RET rearrangements. As more molecularly targeted therapies are developed, precision medicine has the potential to revolutionize the treatment of patients with metastatic PDAC.

16.
Sci Adv ; 8(17): eabm3108, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35486727

ABSTRACT

Dysregulated Wnt/ß-catenin signaling is implicated in the pathogenesis of many human cancers, including colorectal cancer (CRC), making it an attractive clinical target. With the aim of inhibiting oncogenic Wnt activity, we developed a high-throughput screening AlphaScreen assay to identify selective small-molecule inhibitors of the interaction between ß-catenin and its coactivator BCL9. We identified a compound that consistently bound to ß-catenin and specifically inhibited in vivo native ß-catenin/BCL9 complex formation in CRC cell lines. This compound inhibited Wnt activity, down-regulated expression of the Wnt/ß-catenin signature in gene expression studies, disrupted cholesterol homeostasis, and significantly reduced the proliferation of CRC cell lines and tumor growth in a xenograft mouse model of CRC. This study has therefore identified a specific small-molecule inhibitor of oncogenic Wnt signaling, which may have value as a probe for functional studies and has important implications for the development of novel therapies in patients with CRC.


Subject(s)
Colorectal Neoplasms , beta Catenin , Animals , Cholesterol , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Homeostasis , Humans , Mice , Neoplasm Proteins/metabolism , Transcription Factors/genetics , Wnt Signaling Pathway/genetics , beta Catenin/genetics
17.
Dev Cell ; 57(2): 212-227.e8, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34990589

ABSTRACT

The transcriptional co-activator YAP1 oncogene is the downstream effector of the Hippo pathway, which regulates tissue homeostasis, organ size, regeneration, and tumorigenesis. Multiple cancers are dependent on sustained expression of YAP1 for cell proliferation, survival, and tumorigenesis, but the molecular basis of this oncogene dependency is not well understood. To identify genes that can functionally substitute for YAP1, we performed a genome-scale genetic rescue screen in YAP1-dependent colon cancer cells expressing an inducible YAP1-specific shRNA. We found that the transcription factor PRDM14 rescued cell proliferation and tumorigenesis upon YAP1 suppression in YAP1-dependent cells, xenografts, and colon cancer organoids. YAP1 and PRDM14 individually activated the transcription of calmodulin 2 (CALM2) and a glucose transporter SLC2A1 upon YAP1 suppression, and CALM2 or SLC2A1 expression was required for the rescue of YAP1 suppression. Together, these findings implicate PRDM14-mediated transcriptional upregulation of CALM2 and SLC2A1 as key components of oncogenic YAP1 signaling and dependency.


Subject(s)
Carcinogenesis/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Calmodulin/genetics , Calmodulin/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Colonic Neoplasms/genetics , DNA-Binding Proteins/genetics , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Glucose Transporter Type 1/genetics , Humans , Mice , Mice, Nude , Organoids , Phosphoproteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Transcriptional Activation , Xenograft Model Antitumor Assays , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/physiology
18.
Gastroenterology ; 162(1): 209-222, 2022 01.
Article in English | MEDLINE | ID: mdl-34571027

ABSTRACT

BACKGROUND AND AIMS: Genomic alterations that encourage stem cell activity and hinder proper maturation are central to the development of colorectal cancer (CRC). Key molecular mediators that promote these malignant properties require further elucidation to galvanize translational advances. We therefore aimed to characterize a key factor that blocks intestinal differentiation, define its transcriptional and epigenetic program, and provide preclinical evidence for therapeutic targeting in CRC. METHODS: Intestinal tissue from transgenic mice and patients were analyzed by means of histopathology and immunostaining. Human CRC cells and neoplastic murine organoids were genetically manipulated for functional studies. Gene expression profiling was obtained through RNA sequencing. Histone modifications and transcription factor binding were determined with the use of chromatin immunoprecipitation sequencing. RESULTS: We demonstrate that SRY-box transcription factor 9 (SOX9) promotes CRC by activating a stem cell-like program that hinders intestinal differentiation. Intestinal adenomas and colorectal adenocarcinomas from mouse models and patients demonstrate ectopic and elevated expression of SOX9. Functional experiments indicate a requirement for SOX9 in human CRC cell lines and engineered neoplastic organoids. Disrupting SOX9 activity impairs primary CRC tumor growth by inducing intestinal differentiation. By binding to genome wide enhancers, SOX9 directly activates genes associated with Paneth and stem cell activity, including prominin 1 (PROM1). SOX9 up-regulates PROM1 via a Wnt-responsive intronic enhancer. A pentaspan transmembrane protein, PROM1 uses its first intracellular domain to support stem cell signaling, at least in part through SOX9, reinforcing a PROM1-SOX9 positive feedback loop. CONCLUSIONS: These studies establish SOX9 as a central regulator of an enhancer-driven stem cell-like program and carry important implications for developing therapeutics directed at overcoming differentiation defects in CRC.


Subject(s)
Cell Differentiation , Colorectal Neoplasms/metabolism , Enhancer Elements, Genetic , Neoplastic Stem Cells/metabolism , SOX9 Transcription Factor/metabolism , AC133 Antigen/genetics , AC133 Antigen/metabolism , Animals , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Genes, APC , HT29 Cells , Humans , Mice, Transgenic , Neoplastic Stem Cells/pathology , SOX9 Transcription Factor/genetics , Tumor Burden , Tumor Cells, Cultured , Wnt Signaling Pathway
19.
Cancers (Basel) ; 13(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34885025

ABSTRACT

Gastric and esophageal (GE) adenocarcinomas are the third and sixth most common causes of cancer-related mortality worldwide, accounting for greater than 1.25 million annual deaths. Despite the advancements in the multi-disciplinary treatment approaches, the prognosis for patients with GE adenocarcinomas remains poor, with a 5-year survival of 32% and 19%, respectively, mainly due to the late-stage diagnosis and aggressive nature of these cancers. Premalignant lesions characterized by atypical glandular proliferation, with neoplastic cells confined to the basement membrane, often precede malignant disease. We now appreciate that premalignant lesions also carry cancer-associated mutations, enabling disease progression in the right environmental context. A better understanding of the premalignant-to-malignant transition can help us diagnose, prevent, and treat GE adenocarcinoma. Here, we discuss the evidence suggesting that alterations in TP53 occur early in GE adenocarcinoma evolution, are selected for under environmental stressors, are responsible for shaping the genomic mechanisms for pathway dysregulation in cancer progression, and lead to potential vulnerabilities that can be exploited by a specific class of targeted therapy.

20.
Clin Cancer Res ; 27(24): 6622-6637, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34285063

ABSTRACT

Pancreatic cancer is rapidly progressive and notoriously difficult to treat with cytotoxic chemotherapy and targeted agents. Recent demonstration of the efficacy of maintenance PARP inhibition in germline BRCA mutated pancreatic cancer has raised hopes that increased understanding of the DNA damage response pathway will lead to new therapies in both homologous recombination (HR) repair-deficient and proficient pancreatic cancer. Here, we review the potential mechanisms of exploiting HR deficiency, replicative stress, and DNA damage-mediated immune activation through targeted inhibition of DNA repair regulatory proteins.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Adenocarcinoma/genetics , DNA Repair , Homologous Recombination , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Recombinational DNA Repair/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...