Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 21807, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38071253

ABSTRACT

Face masks play a role in reducing the spread of airborne pathogens, providing that they have a good filtration performance, are correctly fitted and maintained. Bacterial Filtration Efficiency (BFE) is a key indicator for evaluating filtration performance according to both European and US standards, requiring the use of Staphylococcus aureus loaded aerosol. However, the generation and handling of a Biohazard group 2 bacterium aerosol require a careful management of the biological risk and pose limitations to the accessibility to this method. To mitigate these drawbacks, we investigated the use of S. epidermidis ATCC 12228, a Biohazard group 1 bacterium, as surrogate in BFE test. To this end, tests with the surrogate strain were performed to tune the method. Then, three face mask models, representative for both surgical and community masks, were tested according to the standard method and then using an aerosolized suspension of S. epidermidis. BFE% values were calculated for each mask model and tested microorganisms. Results showed that BFE test can be performed using the S. epidermidis instead of S. aureus, preserving results validity and turnaround time, but reducing residual risk for laboratory operators.


Subject(s)
Masks , Staphylococcus aureus , Staphylococcus epidermidis , Filtration , Aerosols , Hazardous Substances
2.
J Hazard Mater ; 458: 131998, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37421855

ABSTRACT

Asbestos is widely recognized as being a carcinogen when dispersed in air, but very little is known about its exposure pathways in water and its subsequent effects on human health. Several studies have proved asbestos presence in groundwater but failed to assess its mobility in aquifer systems. This paper aims to fill this gap by studying the transport of crocidolite, an amphibole asbestos, through sandy porous media mimicking different aquifer systems. To this purpose, two sets of column test were performed varying the crocidolite suspension concentration, the quartz sand grain size distribution, and the physicochemical water parameters (i.e., pH). The results proved that crocidolite is mobile in quartz sand due to the repulsive interactions between fibres and porous media. The concentration of fibres at the outlet of the column were found to decrease when decreasing the grain size distribution of the porous medium, with a bigger impact on highly concentrated suspensions. In particular, 5-to-10-µm-long fibres were able to flow through all the tested sands while fibres longer than 10 µm were mobile only through the coarser medium. These results confirm that groundwater migration should be considered a potential exposure pathway while implementing human health risk assessment.

3.
J Contam Hydrol ; 251: 104102, 2022 12.
Article in English | MEDLINE | ID: mdl-36372631

ABSTRACT

The use of electrokinetics (EK) has great potential to deliver reactants in impervious porous media, thus overcoming some of the challenges in the remediation of contaminants trapped in low-permeability zones. In this work we experimentally investigate electrokinetic transport in heterogeneous porous media consisting of a sandy matrix with a target clay inclusion. We demonstrate the efficient EK-delivery of permanganate in the target clay zone (transport velocity 0.3-0.5 m day-1) and its reactivity with Methylene Blue, a positively charged contaminant trapped within the inclusion. The delivery method was optimized using a KH2PO4/K2HPO4 buffer to attenuate the effect of electrolysis reactions in the electrode chambers, thus mitigating the propagation of pH fronts and preventing the phenomenon of permanganate stalling. The experiments showed that the buffer electrical conductivity greatly impacts the potential gradient in the heterogeneous porous medium with implications on the observed rates of electrokinetic transport (variation up to 40%). The reactive experiments provided direct evidence of the permanganate penetration within the clay and of its capability to degrade the target immobilized contaminant. The experimental results were analyzed using a process-based model, elucidating the governing transport mechanisms and highlighting the effect of different mass transfer processes on conservative and reactive electrokinetic transport.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Clay , Manganese Compounds , Oxides
4.
J Hazard Mater ; 436: 129011, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35643007

ABSTRACT

Microplastics detected in potable water sources and tap water have led to concerns about the efficacy of current drinking water treatment processes to remove these contaminants. It is hypothesized that drinking water resources contain nanoplastics (NPs), but the detection of NPs is challenging. We, therefore, used palladium (Pd)-labeled NPs to investigate the behavior and removal of NPs during conventional drinking water treatment processes including ozonation, sand and activated carbon filtration. Ozone doses typically applied in drinking water treatment plants (DWTPs) hardly affect the NPs transport in the subsequent filtration systems. Amongst the different filtration media, NPs particles were most efficiently retained when aged (i.e. biofilm coated) sand was used with good agreements between laboratory and pilot scale systems. The removal of NPs through multiple filtration steps in a municipal full-scale DWTP was simulated using the MNMs software code. Removal efficiencies exceeding 3-log units were modeled for a combination of three consecutive filtration steps (rapid sand filtration, activated carbon filtration and slow sand filtration with 0.4-, 0.2- and 3.0-log-removal, respectively). According to the results from the model, the removal of NPs during slow sand filtration dominated the overall NPs removal which is also supported by the laboratory-scale and pilot-scale data. The results from this study can be used to estimate the NPs removal efficiency of typical DWTPs with similar water treatment chains.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Charcoal , Filtration , Microplastics , Plastics , Sand , Water Pollutants, Chemical/analysis , Water Purification/methods
5.
J Hazard Mater ; 424(Pt B): 127468, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34688001

ABSTRACT

Graphene oxide (GO) nanosheets, often embedded in nano-composites, have been studied as promising materials for waste water purification, in particular to adsorb heavy metals and cationic organic contaminants. However, a broader range of potential applications of GO is still unexplored. This work investigated the potential applicability of GO for enhanced in-situ soil washing of secondary sources of groundwater contamination (i.e. the controlled recirculation of a washing GO suspension via injection/extraction wells). The laboratory study aimed at quantifying the capability of GO to effectively remove adsorbed methylene blue (MB) from contaminated sand. The tests were conducted in simplified conditions (synthetic groundwater at NaCl concentration of 20 mM, silica sand) to better highlight the key mechanisms under study. The results indicated a maximum sorption capacity of 1.6 mgMB/mgGO in moderately alkaline conditions. Even though the adsorption of MB onto GO slightly reduced the GO mobility in the porous medium, a breakthrough higher than 95% was obtained for MB/GO mass ratios up to 0.5. This suggests that a very high recovery of the injected particles should be also expected in the field.

6.
Sci Total Environ ; 766: 144440, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33421784

ABSTRACT

Non-exhaust emissions (NEE) of particulate matter (PM) from brake, tyre, road pavement and railway wear, as well as resuspension of already deposited road dust, account for up to 90% by mass of total traffic-related PM emitted. This review aims at analysing the current knowledge on road traffic NEE regarding sources, particle generation processes, chemical and physical characterization, and mitigation strategies. The literature on this matter often presents highly variable and hardly comparable results due to the heterogeneity of NEE sources and the absence of standardized sampling and measurement protocols. As evidence, emission factors (EFs) were found to range from 1 mg km-1 veh-1 to 18.5 mg km-1 veh-1 for brake wear, and from 0.3 mg km-1 veh-1 to 7.4 mg km-1 veh-1 for tyre wear. Resuspended dust, which varies in even wider ranges (from 5.4 mg km-1 veh-1 to 330 mg km-1 veh-1 for cars), is considered the prevailing NEE source. The lack of standardized monitoring approaches resulted in the impossibility of setting international regulations to limit NEE. Therefore, up until now the abatement of NEE has only been achieved by mitigation and prevention strategies. However, the effectiveness of these measures still needs to be improved and further investigated. As an example, mitigation strategies, such as street washing or sweeping, proved effective in reducing PM levels, but only in the short term. The replacement of internal combustion engines vehicles with electric ones was instead proposed as a prevention strategy, but there are still concerns regarding the increase of NEE deriving from the extra weight of the batteries. The data reported in this review highlighted the need for future studies to broaden their research area, and to focus not only on the standardization of methods and the introduction of regulations, but also on improving already existing technologies and mitigating strategies.

7.
J Contam Hydrol ; 237: 103741, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33341658

ABSTRACT

Remediation of heavy metal-contaminated aquifers is a challenging process because they cannot be degraded by microorganisms. Together with the usually limited effectiveness of technologies applied today for treatment of heavy metal contaminated groundwater, this creates a need for new remediation technologies. We therefore developed a new treatment, in which permeable adsorption barriers are established in situ in aquifers by the injection of colloidal iron oxides. These adsorption barriers aim at the immobilization of heavy metals in aquifers groundwater, which was assessed in a large-scale field study in a brownfield site. Colloidal iron oxide (goethite) nanoparticles were used to install an in situ adsorption barrier in a very heterogeneous, contaminated aquifer of a brownfield in Asturias, Spain. The groundwater contained high concentrations of heavy metals with up to 25 mg/L zinc, 1.3 mg/L lead, 40 mg/L copper, 0.1 mg/L nickel and other minor heavy metal pollutants below 1 mg/L. High amounts of zinc (>900 mg/kg), lead (>2000 mg/kg), nickel (>190 mg/kg) were also present in the sediment. Ca. 1500 kg of goethite nanoparticles of 461 ± 266 nm diameter were injected at low pressure (< 0.6 bar) into the aquifer through nine screened injection wells. For each injection well, a radius of influence of at least 2.5 m was achieved within 8 h, creating an in situ barrier of 22 × 3 × 9 m. Despite the extremely high heavy metal contamination and the strong heterogeneity of the aquifer, successful immobilization of contaminants was observed in the tested area. The contaminant concentrations were strongly reduced immediately after the injection and the abatement of the heavy metals continued for a total post-injection monitoring period of 189 days. The iron oxide particles were found to adsorb heavy metals even at pH-values between 4 and 6, where low adsorption would have been expected. The study demonstrated the applicability of iron oxide nanoparticles for installing adsorption barriers for containment of heavy metals in contaminated groundwater under real conditions.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Magnetic Iron Oxide Nanoparticles , Spain , Water Pollutants, Chemical/analysis
8.
Environ Sci Technol ; 55(1): 719-729, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33295762

ABSTRACT

Electrokinetics in porous media entails complex transport processes occurring upon the establishment of electric potential gradients, with a wide spectrum of environmental applications ranging from remediation of contaminated sites to biotechnology. The resulting electric forces cause the movement of pore water ions in opposite directions, leading to charge interactions that can affect the distribution of charged species in the domain. Here, we demonstrate that changes in chemical conditions, such as the concentration of a background electrolyte in the pore water of a saturated porous medium, exert a key control on the macroscopic transport of charged tracers and reactants. The difference in concentration between the background electrolyte and an injected solute can limit or enhance the reactant delivery, cause nonintuitive patterns of concentration distribution, and ultimately control mixing and degradation kinetics. With nonreactive and reactive electrokinetic transport experiments combined with process-based modeling, we show that microscopic charge interactions in the pore water play a crucial role on the transport of injected plumes and on the mechanisms and rate of both physical and chemical processes at larger, macroscopic scales. Our results have important implications on electrokinetic transport in porous media and may greatly impact injection and delivery strategies in a wide range of applications, including in situ remediation of soil and groundwater.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Soil Pollutants , Porosity , Soil , Soil Pollutants/analysis , Water
9.
Sci Total Environ ; 698: 134224, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31493572

ABSTRACT

This study focuses on the transport in porous media of graphene oxide nanoparticles (GONP) under conditions similar to those applied in the generation of in-situ reactive zones for groundwater remediation (i.e. GO concentration of few tens of mg/l, stable suspension in alkaline solution). The experimental tests evaluated the influence on GO transport of three key factors, namely particle size (300-1200 nm), concentration (10-50 mg/L), and sand size (coarse to fine). Three sources of GONP were considered (two commercial and one synthesized in the laboratory). Particles were stably dispersed in water at pH 8.5 and showed a good mobility in the porous medium under all experimental conditions: after injection of 5 pore volumes and flushing, the highest recovery was around 90%, the lowest around 30% (only for largest particles in fine sand). The particle size was by far the most impacting parameter, with increasing mobility with decreasing size, even if sand size and particle concentration were also relevant. The source of GONP showed a minor impact on the mobility. The transport test data were successfully modeled using the advection-dispersion-deposition equations typically applied for spherical colloids. Experimental and modeling results suggested that GONP, under the explored conditions, are retained due to both blocking and straining, the latter being relevant only for large particles and/or fine sand. The findings of this study play a key role in the development of an in-situ groundwater remediation technology based on the injection of GONP for contaminant degradation or sorption. Despite their peculiar shape, GONP behavior in porous media is comparable with spherical colloids, which have been more studied by far. In particular, the possibility of modeling GONP transport using existing models ensures that they can be applied also for the design of field-scale injections of GONP, similarly to other particles already used in nanoremediation.

10.
Nutrients ; 11(5)2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31052212

ABSTRACT

Different alcoholic beverages can have different effects on blood alcohol concentration (BAC) and neurotoxicity, even when equalized for alcohol content by volume. Anecdotal evidence suggested that natural wine is metabolized differently from conventional wines. This triple-blind study compared the BAC of 55 healthy male subjects after consuming the equivalent of 2 units of alcohol of a natural or conventional wine over 3 min in two separate sessions, one week apart. BAC was measured using a professional breathalyzer every 20 min after consumption for 2 h. The BAC curves in response to the two wines diverged significantly at twenty minutes (interval T20) and forty minutes (interval T40), and also at their maximum concentrations (peaks), with the natural wine inducing a lower BAC than the conventional wine [T20 = 0.40 versus 0.46 (p < 0.0002); T40 = 0.49 versus 0.53 (p < 0.0015); peak = 0.52 versus 0.56 (p < 0.0002)]. These differences are likely related to the development of different amino acids and antioxidants in the two wines during their production. This may in turn affect the kinetics of alcohol absorption and metabolism. Other contributing factors could include pesticide residues, differences in dry extract content, and the use of indigenous or selected yeasts. The study shows that with the same quantity and conditions of intake, natural wine has lower pharmacokinetic and metabolic effects than conventional wine, which can be assumed due to the different agronomic and oenological practices with which they are produced. It can therefore be hypothesized that the consumption of natural wine may have a different impact on human health from that of conventional wine.


Subject(s)
Blood Alcohol Content , Wine/analysis , Wine/classification , Fermentation , Humans , Male , Pesticides , Yeasts , Young Adult
11.
Environ Pollut ; 239: 242-252, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29656248

ABSTRACT

Nanosized particles (NPs), such as TiO2, Silver, graphene NPs, nanoscale zero-valent iron, carbon nanotubes, etc., are increasingly used in industrial processes, and releases at production plants and from landfills are likely scenarios for the next years. As a consequence, appropriate procedures and tools to quantify the risks for human health associated to these releases are needed. The tiered approach of the standard ASTM procedure (ASTM-E2081-00) is today the most applied for human health risk assessment at sites contaminated by chemical substances, but it cannot be directly applied to nanoparticles: NP transport along migration pathways follows mechanisms significantly different from those of chemicals; moreover, also toxicity indicators (namely, reference dose and slope factor) are NP-specific. In this work a risk assessment approach modified for NPs is proposed, with a specific application at Tier 2 to migration in groundwater. The standard ASTM equations are modified to include NP-specific transport mechanisms. NPs in natural environments are typically characterized by a heterogeneous set of NPs having different size, shape, coating, etc. (all properties having a significant impact on both mobility and toxicity). To take into account this heterogeneity, the proposed approach divides the NP population into classes, each having specific transport and toxicity properties, and simulates them as independent species. The approach is finally applied to a test case simulating the release of heterogeneous Silver NPs from a landfill. The results show that taking into account the size-dependent mobility of the particles provides a more accurate result compared to the direct application of the standard ASTM procedure. In particular, the latter tends to underestimate the overall toxic risk associated to the nP release.


Subject(s)
Environmental Exposure/analysis , Groundwater/chemistry , Nanotubes, Carbon/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Environmental Exposure/statistics & numerical data , Graphite , Humans , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Silver/chemistry
12.
ACS Omega ; 3(8): 9407-9418, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459074

ABSTRACT

The complete removal of biorecalcitrant xenobiotics, including most notably the pharmaceutical pollutants, by advanced oxidation processes is often difficult to be reached in urban or industrial wastewater because of the high concentration of organic and inorganic scavengers that compete with the xenobiotics for the oxidizing species. This work investigates a coupled treatment train in which wastewater effluents are pretreated with a negatively charged loose nanofiltration (NF) membrane (HydraCoRe70, made up of sulfonated polyethersulfone) to enhance the removal of xenobiotics with the thermal Fenton process. Carbamazepine (CBZ), a drug prescribed mainly for epilepsy treatment, is used here as a model xenobiotic. After optimizing the conditions for separation and degradation, the NF-Fenton approach was applied to both synthetic wastewater and real samples to assess the overall efficiency of CBZ removal. The Fenton degradation of CBZ was drastically enhanced in nanofiltered samples, thanks to the removal by the membrane of nearly all organic matter that would otherwise consume the reactive oxidizing species (e.g., the hydroxyl radical). On the basis of a preliminary treatment cost analysis, it can be concluded that the combined process is potentially applicable to the treatment of several kinds of wastewaters (e.g., industrial ones) to favor the removal of biorecalcitrant contaminants. Key cost savings of NF-Fenton concern the lower amounts of Fenton reagents needed to degrade CBZ and (even more importantly) the decreased levels of acids and bases for pH adjustment before and after the oxidative process because of the lower buffer capacity of the NF permeate compared to feed wastewater, after the removal by the NF of many inorganic ions and most organic carbon.

13.
J Contam Hydrol ; 212: 3-13, 2018 05.
Article in English | MEDLINE | ID: mdl-28965708

ABSTRACT

In the upscaling from pore to continuum (Darcy) scale, reaction and deposition phenomena at the solid-liquid interface of a porous medium have to be represented by macroscopic reaction source terms. The effective rates can be computed, in the case of periodic media, from three-dimensional microscopic simulations of the periodic cell. Several computational and semi-analytical models have been studied in the field of colloid filtration to describe this problem. They typically rely on effective deposition rates defined by complex fitting procedures, neglecting the advection-diffusion interplay, the pore-scale flow complexity, and assuming slow reactions (or large Péclet numbers). Therefore, when these rates are inserted into general macroscopic transport equations, they can lead to several conceptual inconsistencies and significant errors. To study more accurately the dependence of deposition on the flow parameters, in this work we advocate a clear distinction between the surface processes (that altogether defines the so-called attachment efficiency), and the pore-scale processes. With this approach, valid when colloidal particles are small enough, we study Brownian and gravity-driven deposition on a face-centred cubic (FCC) arrangement of spherical grains, and define a robust upscaling based on a linear effective reaction rate. The case of partial deposition, defined by an attachment probability, is studied and the limit of perfect sink is retrieved as a particular case. We introduce a novel upscaling approach and a particularly convenient computational setup that allows the direct computation of the asymptotic stationary value of effective rates. This allows to drastically reduce the computational domain down to the scale of the single repeating periodic unit. The savings are ever more noticeable in the case of higher Péclet numbers, when larger physical times are needed to reach the asymptotic regime and thus, equivalently, much larger computational domain and simulation time would be needed in a traditional setup. We show how this new definition of deposition rate is more robust and extendable to the whole range of Péclet numbers; it also is consistent with the classical heat and mass transfer literature.


Subject(s)
Models, Theoretical , Water Purification/methods , Colloids/chemistry , Environmental Restoration and Remediation/methods , Filtration/methods , Porosity , Water Pollutants/analysis , Water Pollutants/chemistry
14.
Sci Rep ; 7(1): 12992, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29021630

ABSTRACT

In this study, a model assisted strategy is developed to control the distribution of colloids in porous media in the framework of nanoremediation, an innovative environmental nanotechnology aimed at reclaiming contaminated aquifers. This approach is exemplified by the delivery of humic acid-stabilized iron oxide nanoparticles (FeOx), a typical reagent for in situ immobilization of heavy metals. By tuned sequential injections of FeOx suspensions and of solutions containing a destabilizing agent (i.e. calcium or magnesium), the two fronts, which advance at different rates, overlap at the target location (i.e., the central portion) of the porous systems. Here, the particles deposit and accumulate irreversibly, creating a reactive zone. An analytical expression predicting the position of the clustering zone in 1D systems is derived from first principles of advective-dispersive transport. Through this equation, the sequence and duration of the injection of the different solutions in the medium is assessed. The model robustness is demonstrated by its successful application to various systems, comprising the use of different sands or immobilizing cations, both in 1D and 2D geometries. The method represents an advancement in the control of nanomaterial fate in the environment, and could enhance nanoremediation making it an effective alternative to more conventional techniques.

15.
Phys Rev E ; 94(5-1): 053118, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27967112

ABSTRACT

In this work, the influence of pore space geometry on solute transport in porous media is investigated performing computational fluid dynamics pore-scale simulations of fluid flow and solute transport. The three-dimensional periodic domains are obtained from three different pore structure configurations, namely, face-centered-cubic (fcc), body-centered-cubic (bcc), and sphere-in-cube (sic) arrangements of spherical grains. Although transport simulations are performed with media having the same grain size and the same porosity (in fcc and bcc configurations), the resulting breakthrough curves present noteworthy differences, such as enhanced tailing. The cause of such differences is ascribed to the presence of recirculation zones, even at low Reynolds numbers. Various methods to readily identify recirculation zones and quantify their magnitude using pore-scale data are proposed. The information gained from this analysis is then used to define macroscale models able to provide an appropriate description of the observed anomalous transport. A mass transfer model is applied to estimate relevant macroscale parameters (hydrodynamic dispersion above all) and their spatial variation in the medium; a functional relation describing the spatial variation of such macroscale parameters is then proposed.

16.
J Contam Hydrol ; 193: 10-20, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27607520

ABSTRACT

Engineered nanoparticles (NPs) in the environment can act both as contaminants, when they are unintentionally released, and as remediation agents when injected on purpose at contaminated sites. In this work two carbon-based NPs are considered, namely CARBO-IRON®, a new material developed for contaminated site remediation, and single layer graphene oxide (SLGO), a potential contaminant of the next future. Understanding and modeling the transport and deposition of such NPs in aquifer systems is a key aspect in both cases, and numerical models capable to simulate NP transport in groundwater in complex 3D scenarios are necessary. To this aim, this work proposes a modeling approach based on modified advection-dispersion-deposition equations accounting for the coupled influence of flow velocity and ionic strength on particle transport. A new modeling tool (MNM3D - Micro and Nanoparticle transport Model in 3D geometries) is presented for the simulation of NPs injection and transport in 3D scenarios. MNM3D is the result of the integration of the numerical code MNMs (Micro and Nanoparticle transport, filtration and clogging Model - Suite) in the well-known transport model RT3D (Clement et al., 1998). The injection in field-like conditions of CARBO-IRON® (20g/l) amended by CMC (4g/l) in a 2D vertical tank (0.7×1.0×0.12m) was simulated using MNM3D, and compared to experimental results under the same conditions. Column transport tests of SLGO at a concentration (10mg/l) representative of a possible spill of SLGO-containing waste water were performed at different values of ionic strength (0.1 to 35mM), evidencing a strong dependence of SLGO transport on IS, and a reversible blocking deposition. The experimental data were fitted using the numerical code MNMs and the ionic strength-dependent transport was up-scaled for a full scale 3D simulation of SLGO release and long-term transport in a heterogeneous aquifer. MNM3D showed to potentially represent a valid tool for the prediction of the long-term behavior of engineered nanoparticles released in the environment (e.g. from landfills), and the preliminary design of in situ aquifer remediation through injection of suspensions of reactive NPs.


Subject(s)
Carbon/chemistry , Environmental Restoration and Remediation/methods , Filtration , Graphite/chemistry , Models, Chemical , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Groundwater/chemistry , Porosity
17.
Environ Sci Technol ; 49(9): 5593-600, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25884287

ABSTRACT

The injection of microscale zerovalent iron (mZVI) particles for groundwater remediation has received much interest in recent years. However, to date, monitoring of mZVI particle injection is based on chemical analysis of groundwater and soil samples and thus might be limited in its spatiotemporal resolution. To overcome this deficiency, in this study, we investigate the application of complex electrical conductivity imaging, a geophysical method, to monitor the high-pressure injection of mZVI in a field-scale application. The resulting electrical images revealed an increase in the induced electrical polarization (∼20%), upon delivery of ZVI into the targeted area, due to the accumulation of metallic surfaces at which the polarization takes place. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through preferential flowpaths. Correlation of the electrical response and geochemical data, in particular the analysis of recovered cores from drilling after the injection, confirmed the migration of particles (and stabilizing solution) to shallow areas through fractures formed during the injection. Hence, our results demonstrate the suitability of the complex conductivity imaging method to monitor the transport of mZVI during subsurface amendment in quasi real-time.


Subject(s)
Electric Conductivity , Environmental Restoration and Remediation , Groundwater/chemistry , Imaging, Three-Dimensional , Iron/chemistry , Belgium , Hydrocarbons, Chlorinated/analysis , Solutions
18.
J Colloid Interface Sci ; 446: 185-93, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25666460

ABSTRACT

In this study a novel total flux normalized correlation equation is proposed for predicting single-collector efficiency under a broad range of parameters. The correlation equation does not exploit the additivity approach introduced by Yao et al. (1971), but includes mixed terms that account for the mutual interaction of concomitant transport mechanisms (i.e., advection, gravity and Brownian motion) and of finite size of the particles (steric effect). The correlation equation is based on a combination of Eulerian and Lagrangian simulations performed, under Smoluchowski-Levich conditions, in a geometry which consists of a sphere enveloped by a cylindrical control volume. The normalization of the deposited flux is performed accounting for all of the particles entering into the control volume through all transport mechanisms (not just the upstream convective flux as conventionally done) to provide efficiency values lower than one over a wide range of parameters. In order to guarantee the independence of each term, the correlation equation is derived through a rigorous hierarchical parameter estimation process, accounting for single and mutual interacting transport mechanisms. The correlation equation, valid both for point and finite-size particles, is extended to include porosity dependency and it is compared with previous models. Reduced forms are proposed by elimination of the less relevant terms.

19.
Article in English | MEDLINE | ID: mdl-25122394

ABSTRACT

In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. The realistic three-dimensional porous medium is created in this work by packing together, with standard ballistic physics, irregular and polydisperse objects. Emphasis is placed on numerical issues related to mesh generation and spatial discretization, which play an important role in determining the final accuracy of the finite-volume scheme and are often overlooked. The simulations performed are then analyzed in terms of velocity distributions and dispersion rates in a wider range of operating conditions, when compared with other works carried out by solving the Stokes equation. Results show that dispersion within the analyzed porous medium is adequately described by classical power laws obtained by analytic homogenization. Eventually the validity of Fickian diffusion to treat dispersion in porous media is also assessed.


Subject(s)
Hydrodynamics , Models, Molecular , Molecular Conformation , Porosity
20.
J Contam Hydrol ; 166: 34-51, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25063698

ABSTRACT

In the present work column transport tests were performed in order to study the mobility of guar-gum suspensions of microscale zero-valent iron particles (MZVI) in porous media. The results were analyzed with the purpose of implementing a radial model for the design of full scale interventions. The transport tests were performed using several concentrations of shear thinning guar gum solutions as stabilizer (1.5, 3 and 4g/l) and applying different flow rates (Darcy velocity in the range 1·10(-4) to 2·10(-3)m/s), representative of different distances from the injection point in the radial domain. Empirical relationships, expressing the dependence of the deposition and release parameters on the flow velocity, were derived by inverse fitting of the column transport tests using a modified version of E-MNM1D (Tosco and Sethi, 2010) and the user interface MNMs (www.polito.it/groundwater/software). They were used to develop a comprehensive transport model of MZVI suspensions in radial coordinates, called E-MNM1R, which takes into account the non Newtonian (shear thinning) rheological properties of the dispersant fluid and the porous medium clogging associated with filtration and sedimentation in the porous medium of both MZVI and guar gum residual undissolved particles. The radial model was run in forward mode to simulate the injection of MZVI dispersed in guar gum in conditions similar to those applied in the column transport tests. In a second stage, we demonstrated how the model can be used as a valid tool for the design and the optimization of a full scale intervention. The simulation results indicated that several concurrent aspects are to be taken into account for the design of a successful delivery of MZVI/guar gum slurries via permeation injection, and a compromise is necessary between maximizing the radius of influence of the injection and minimizing the injection pressure, to guarantee a sufficiently homogeneous distribution of the particles around the injection point and to prevent preferential flow paths.


Subject(s)
Environmental Restoration and Remediation/methods , Galactans/chemistry , Iron/chemistry , Mannans/chemistry , Models, Chemical , Plant Gums/chemistry , Filtration , Porosity , Rheology , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...