Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(26): e2116738119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35749366

ABSTRACT

Tumor infiltration by T cells profoundly affects cancer progression and responses to immunotherapy. However, the tumor immunosuppressive microenvironment can impair the induction, trafficking, and local activity of antitumor T cells. Here, we investigated whether intratumoral injection of virus-derived peptide epitopes could activate preexisting antiviral T cell responses locally and promote antitumor responses or antigen spreading. We focused on a mouse model of cytomegalovirus (CMV), a highly prevalent human infection that induces vigorous and durable T cell responses. Mice persistently infected with murine CMV (MCMV) were challenged with lung (TC-1), colon (MC-38), or melanoma (B16-F10) tumor cells. Intratumoral injection of MCMV-derived T cell epitopes triggered in situ and systemic expansion of their cognate, MCMV-specific CD4+ or CD8+ T cells. The MCMV CD8+ T cell epitopes injected alone provoked arrest of tumor growth and some durable remissions. Intratumoral injection of MCMV CD4+ T cell epitopes with polyinosinic acid:polycytidylic acid (pI:C) preferentially elicited tumor antigen-specific CD8+ T cells, promoted tumor clearance, and conferred long-term protection against tumor rechallenge. Notably, secondary proliferation of MCMV-specific CD8+ T cells correlated with better tumor control. Importantly, intratumoral injection of MCMV-derived CD8+ T cell-peptide epitopes alone or CD4+ T cell-peptide epitopes with pI:C induced potent adaptive and innate immune activation of the tumor microenvironment. Thus, CMV-derived peptide epitopes, delivered intratumorally, act as cytotoxic and immunotherapeutic agents to promote immediate tumor control and long-term antitumor immunity that could be used as a stand-alone therapy. The tumor antigen-agnostic nature of this approach makes it applicable across a broad range of solid tumors regardless of their origin.


Subject(s)
CD8-Positive T-Lymphocytes , Cytomegalovirus Infections , Cytomegalovirus , Epitopes, T-Lymphocyte , Neoplasms , Animals , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Epitopes, T-Lymphocyte/administration & dosage , Epitopes, T-Lymphocyte/immunology , Immunotherapy , Mice , Neoplasms/immunology , Neoplasms/therapy , Poly I-C/administration & dosage , Poly I-C/immunology , Tumor Microenvironment
2.
Phys Rev Lett ; 129(26): 261301, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36608194

ABSTRACT

The 21-cm line emitted by neutral hydrogen (HI) during the Dark Ages carries imprints of pristine primordial correlations. In models of inflation driven by a single, canonical scalar field, we show that a phase of ultra-slow-roll can lead to a null in all the primordial correlations at a specific wave number k_{dip}. We consider scenarios wherein the null in the correlations occurs over wave numbers 1≲k_{dip}≲10 Mpc^{-1}, and examine the prospects of detecting such a damping in the HI signal due to the nulls at the level of power and bispectra in future observational missions.

3.
J Control Release ; 317: 336-346, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31756393

ABSTRACT

The skin is an attractive tissue target for vaccination, as it is readily accessible and contains a dense population of antigen-presenting and immune-accessory cells. Microneedle arrays (MNAs) are emerging as an effective tool for in situ engineering of the cutaneous microenvironment to enable diverse immunization strategies. Here, we present novel dissolving undercut MNAs and demonstrate their application for effective multicomponent cutaneous vaccination. The MNAs are composed of micron-scale needles featuring pyramidal heads supported by undercut stem regions with filleted bases to ensure successful skin penetration and retention during application. Prior efforts to fabricate dissolving undercut microstructures were limited and required complex and lengthy processing and assembly steps. In the current study, we strategically combine three-dimensional (3D) laser lithography, an emerging micro-additive manufacturing method with unique geometric capabilities and nanoscale resolution, and micromolding with favorable materials. This approach enables reproducible production of dissolving MNAs with undercut microneedles that can be tip-loaded with multiple biocargos, such as antigen (ovalbumin) and adjuvant (Poly(I:C)). The resulting MNAs fulfill the geometric (sharp tips and smooth edges) and mechanical-strength requirements for failure-free penetration of human and murine skin to simultaneously deliver multicomponent (antigen plus adjuvant) vaccines to the same cutaneous microenvironment. Cutaneous vaccination of mice using these MNAs induces more potent antigen-specific cellular and humoral immune responses than those elicited by traditional intramuscular injection. Together, the unique geometric features of these undercut MNAs and the associated manufacturing strategy, which is compatible with diverse drugs and biologics, could enable a broad range of non-cutaneous and cutaneous drug delivery applications, including multicomponent vaccination.


Subject(s)
Vaccination , Vaccines , Administration, Cutaneous , Animals , Drug Delivery Systems , Mice , Microinjections , Needles , Skin
SELECTION OF CITATIONS
SEARCH DETAIL
...