Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Science ; 384(6694): 458-465, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662818

ABSTRACT

Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.


Subject(s)
Biodiversity , Climate Change , Extinction, Biological
3.
Nat Food ; 4(9): 788-796, 2023 09.
Article in English | MEDLINE | ID: mdl-37696964

ABSTRACT

Rice is a staple food for half of the human population, but the effects of diversification on yields, economy, biodiversity and ecosystem services have not been synthesized. Here we quantify diversification effects on environmental and socio-economic aspects of global rice production. We performed a second-order meta-analysis based on 25 first-order meta-analyses covering four decades of research, showing that diversification can maintain soil fertility, nutrient cycling, carbon sequestration and yield. We used three individual first-order meta-analyses based on 39 articles to close major research gaps on the effects of diversification on economy, biodiversity and pest control, showing that agricultural diversification can increase biodiversity by 40%, improve economy by 26% and reduce crop damage by 31%. Trade-off analysis showed that agricultural diversification in rice production promotes win-win scenarios between yield and other ecosystem services in 81% of all cases. Knowledge gaps remain in understanding the spatial and temporal effects of specific diversification practices and trade-offs.


Subject(s)
Oryza , Humans , Oryza/genetics , Ecosystem , Agriculture , Soil , Bicycling
4.
BMC Ecol Evol ; 23(1): 32, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37592219

ABSTRACT

In 2023, researchers from around the world entered the BMC Ecology and Evolution photography competition. As a result, we received a spectacular collection of photographs that capture the wonder of nature, those looking to understand it and glimpses into long lost worlds. This editorial celebrates the winning images selected by the Editor of BMC Ecology and Evolution and senior members of the journal's editorial board.


Subject(s)
Ecology , Photography , Humans , Research Personnel
5.
Glob Chang Biol ; 29(12): 3271-3284, 2023 06.
Article in English | MEDLINE | ID: mdl-36924241

ABSTRACT

At large scales, the mechanisms underpinning stability in natural communities may vary in importance due to changes in species composition, mean abundance, and species richness. Here we link species characteristics (niche positions) and community characteristics (richness and abundance) to evaluate the importance of stability mechanisms in 156 butterfly communities monitored across three European countries and spanning five bioclimatic regions. We construct niche-based hierarchical structural Bayesian models to explain first differences in abundance, population stability, and species richness between the countries, and then explore how these factors impact community stability both directly and indirectly (via synchrony and population stability). Species richness was partially explained by the position of a site relative to the niches of the species pool, and species near the centre of their niche had higher average population stability. The differences in mean abundance, population stability, and species richness then influenced how much variation in community stability they explained across the countries. We found, using variance partitioning, that community stability in Finnish communities was most influenced by community abundance, whereas this aspect was unimportant in Spain with species synchrony explaining most variation; the UK was somewhat intermediate with both factors explaining variation. Across all countries, the diversity-stability relationship was indirect with species richness reducing synchrony which increased community stability, with no direct effects of species richness. Our results suggest that in natural communities, biogeographical variation observed in key drivers of stability, such as population abundance and species richness, leads to community stability being limited by different factors and that this can partially be explained due to the niche characteristics of the European butterfly assemblage.


Subject(s)
Butterflies , Ecosystem , Animals , Biodiversity , Bayes Theorem , Europe
6.
Ecol Indic ; 146: 109866, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36777177

ABSTRACT

Extensively managed grasslands are globally recognized for their high biodiversity value. Over the past century, a continuous loss and degradation of grassland habitats has been observed across Europe that is mainly attributable to agricultural intensification and land abandonment. Particularly insects have suffered from the loss of grassland habitats due to land-use change and the decrease in habitat quality, either due to an increase in livestock density, higher mowing frequency, and an increase in nitrogen fertilization, or by abandonment. However, only a few studies have used nationwide datasets to analyse the effects of land cover and land-use intensity on insects. It further remains largely unexplored how these effects are modulated by species traits, i.e. habitat specialisation and mobility. Using nationwide butterfly data originating from the German Butterfly Monitoring Scheme, we investigated the effect of three indicators related to land cover and agricultural land-use intensity on species richness as well as trait composition of butterfly communities. Based on agricultural census data at the municipality scale, we calculated the share of permanent grasslands (measure of habitat availability), the total livestock density (proxy for organic fertilization) and the livestock density of domestic herbivores (proxy for management intensity in grasslands) within a 2 km buffer surrounding each butterfly transect. To analyse the relationships between butterflies and indicators of land cover and land-use intensity, we applied generalised linear mixed effect models. We found a negative relationship between butterfly species richness and the livestock density of domestic herbivores. Further, the ratio of butterfly generalist to specialist species shifted towards generalists and the size of butterflies increased with higher herbivore livestock density, indicating a shift in communities towards mobile habitat generalists. Our results are in accordance with previous studies carried out across smaller geographic extents, highlighting the importance of low herbivore livestock densities to halt the loss of pollinating insects and safeguard biodiversity and associated ecosystem services in agricultural landscapes. We here demonstrate that indicators based on livestock distribution data at the municipality scale can provide insights into processes and spatial diversity patterns of butterflies at the national level. Further, we highlight potentials and limitations of using agricultural census data to quantify and assess effects of land cover and land-use intensity on butterflies, and make recommendations for further research needs.

7.
Sci Adv ; 8(45): eabm9982, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36351024

ABSTRACT

Effective policies to halt biodiversity loss require knowing which anthropogenic drivers are the most important direct causes. Whereas previous knowledge has been limited in scope and rigor, here we statistically synthesize empirical comparisons of recent driver impacts found through a wide-ranging review. We show that land/sea use change has been the dominant direct driver of recent biodiversity loss worldwide. Direct exploitation of natural resources ranks second and pollution third; climate change and invasive alien species have been significantly less important than the top two drivers. The oceans, where direct exploitation and climate change dominate, have a different driver hierarchy from land and fresh water. It also varies among types of biodiversity indicators. For example, climate change is a more important driver of community composition change than of changes in species populations. Stopping global biodiversity loss requires policies and actions to tackle all the major drivers and their interactions, not some of them in isolation.

8.
BMC Ecol Evol ; 22(1): 99, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35982402

ABSTRACT

In 2022, researchers from around the world entered the BMC Ecology and Evolution photography competition. The contest produced a spectacular collection of photographs that capture the wonder of the natural world and the growing need to protect it as the human impact on the planet intensifies. This editorial celebrates the winning images selected by the Editor of BMC Ecology and Evolution and senior members of the journal's editorial board.


Subject(s)
Ecology , Photography , Humans
9.
Insects ; 13(7)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35886780

ABSTRACT

Soil silicon enhances rice defenses against a range of biotic stresses. However, the magnitude of these effects can depend on the nature of the rice variety. We conducted a series of greenhouse experiments to examine the effects of silicon on planthoppers (Nilaparvata lugens [BPH] and Sogatella furcifera [WBPH]), a leafhopper (Nephotettix virescens [GLH]), blast disease (Magnaporthe grisea) and bacterial blight (Xanthomonas oryzae) in susceptible and resistant rice. We added powdered silica gel (SiO2) to paddy soil at equivalent to 0.25, 1.0, and 4.0 t ha-1. Added silicon reduced BPH nymph settling, but the effect was negligible under high nitrogen. In a choice experiment, BPH egg-laying was lower than untreated controls under all silicon treatments regardless of nitrogen or variety, whereas, in a no-choice experiment, silicon reduced egg-laying on the susceptible but not the resistant (BPH32 gene) variety. Stronger effects in choice experiments suggest that silicon mainly enhanced antixenosis defenses. We found no effects of silicon on WBPH or GLH. Silicon reduced blast damage to susceptible and resistant (Piz, Piz-5 and Pi9 genes) rice. Silicon reduced damage from a virulent strain of bacterial blight but had little effect on a less virulent strain in susceptible and resistant (Xa4, Xa7 and Xa4 + Xa7 genes) varieties. When combined with resistance, silicon had an additive effect in reducing biomass losses to plants infested with bacterial blight (resistance up to 50%; silicon 20%). We discuss how silicon-containing soil amendments can be combined with host resistance to reduce biotic stresses in rice.

10.
Ecol Appl ; 32(3): e2560, 2022 04.
Article in English | MEDLINE | ID: mdl-35112756

ABSTRACT

Biological control services of agroecosystems depend on the functional diversity of species traits. However, the relationship between arthropod traits and landscape heterogeneity is still poorly understood, especially in tropical rice agroecosystems, which harbor a high diversity of often specialized species. We investigated how landscape heterogeneity, measured by three metrics of landscape composition and configuration, influenced body size, functional group composition, dispersal ability, and vertical distribution of rice arthropods in the Philippines. We found that landscape composition and configuration acted to filter arthropod traits in tropical rice agroecosystems. Landscape diversity and rice habitat fragmentation were the two main gradients influencing rice-arthropod traits, indicating that different rice arthropods have distinct habitat requirements. Whereas small parasitoids and species mostly present in the rice canopy were favored in landscapes with high compositional heterogeneity, predators and medium-sized species occupying the base of the rice plant, including planthoppers, mostly occurred in highly fragmented rice habitats. We demonstrate the importance of landscape heterogeneity as an ecological filter for rice arthropods, identifying how the different components of landscape heterogeneity selected for or against specific functional traits. However, the contrasting effects of landscape parameters on different groups of natural enemies indicate that not all beneficial rice arthropods can be promoted at the same time when using a single land management strategy. Increasing compositional heterogeneity in rice landscapes can promote parasitoids but may also negatively affect predators. Future research should focus on identifying trade-offs between fragmented rice habitats and structurally diverse landscapes to maximize the presence of multiple groups of beneficial arthropods.


Subject(s)
Arthropods , Oryza , Animals , Biodiversity , Ecosystem
11.
Glob Chang Biol ; 28(9): 2846-2874, 2022 05.
Article in English | MEDLINE | ID: mdl-35098619

ABSTRACT

The two most urgent and interlinked environmental challenges humanity faces are climate change and biodiversity loss. We are entering a pivotal decade for both the international biodiversity and climate change agendas with the sharpening of ambitious strategies and targets by the Convention on Biological Diversity and the United Nations Framework Convention on Climate Change. Within their respective Conventions, the biodiversity and climate interlinked challenges have largely been addressed separately. There is evidence that conservation actions that halt, slow or reverse biodiversity loss can simultaneously slow anthropogenic mediated climate change significantly. This review highlights conservation actions which have the largest potential for mitigation of climate change. We note that conservation actions have mainly synergistic benefits and few antagonistic trade-offs with climate change mitigation. Specifically, we identify direct co-benefits in 14 out of the 21 action targets of the draft post-2020 global biodiversity framework of the Convention on Biological Diversity, notwithstanding the many indirect links that can also support both biodiversity conservation and climate change mitigation. These relationships are context and scale-dependent; therefore, we showcase examples of local biodiversity conservation actions that can be incentivized, guided and prioritized by global objectives and targets. The close interlinkages between biodiversity, climate change mitigation, other nature's contributions to people and good quality of life are seldom as integrated as they should be in management and policy. This review aims to re-emphasize the vital relationships between biodiversity conservation actions and climate change mitigation in a timely manner, in support to major Conferences of Parties that are about to negotiate strategic frameworks and international goals for the decades to come.


Subject(s)
Conservation of Natural Resources , Quality of Life , Biodiversity , Climate Change , Ecosystem , Humans
13.
BMC Ecol Evol ; 21(1): 157, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34384349

ABSTRACT

The inaugural BMC Ecology and Evolution image competition attracted entries from talented ecologists and evolutionary biologists worldwide. Together, these photos beautifully capture biodiversity, how it arose and why we should conserve it. This editorial celebrates the winning images as selected by the Editor of BMC Ecology and Evolution and senior members of the journal's editorial board.


Subject(s)
Biodiversity , Ecology , Health Personnel , Humans
14.
Trends Ecol Evol ; 36(7): 623-636, 2021 07.
Article in English | MEDLINE | ID: mdl-33865639

ABSTRACT

Multiple global change pressures, and their interplay, cause plant-pollinator extinctions and modify species assemblages and interactions. This may alter the risks of pathogen host shifts, intra- or interspecific pathogen spread, and emergence of novel population or community epidemics. Flowers are hubs for pathogen transmission. Consequently, the structure of plant-pollinator interaction networks may be pivotal in pathogen host shifts and modulating disease dynamics. Traits of plants, pollinators, and pathogens may also govern the interspecific spread of pathogens. Pathogen spillover-spillback between managed and wild pollinators risks driving the evolution of virulence and community epidemics. Understanding this interplay between host-pathogen dynamics and global change will be crucial to predicting impacts on pollinators and pollination underpinning ecosystems and human wellbeing.


Subject(s)
Ecosystem , Epidemics , Flowers , Humans , Plants , Pollination
15.
Insects ; 12(3)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801159

ABSTRACT

Rice production is often associated with high pesticide input. To improve farmers' practice, sustainable management approaches are urgently needed, such as ecological engineering (EE), which aims at enhancing beneficial arthropods while reducing pesticides. Here, we implemented and tested EE in Cambodian rice fields by comparing: (i) fields not treated with pesticides (control); (ii) fields not treated with pesticides but with non-rice crops planted in the surrounding (EE); and (iii) conventionally farmed fields using pesticides (CR). Using benefit-cost analysis, we compared the economic value of each treatment. The non-rice crops preferred by men and women farmers as well as farmers' willingness to implement EE were assessed using surveys. We sampled arthropod abundance and richness in rice fields and bunds during two seasons. During the dry season, we compared EE and CR among three Cambodian provinces. During the wet season, we specifically assessed the differences in EE, control and CR in arthropod abundance and rice yield in one province. While withholding from using pesticides did not result in a decrease in yield in EE and control treatments, parasitoid abundance was higher in both treatments during the wet season. The benefit-cost ratio was highest for EE and control treatments. Pesticides were likely the main driver causing low arthropod abundance, without any benefit towards increased rice yield. The proper implementation of EE coupled with farmers' knowledge of ecologically based pest management is a promising solution towards sustainable rice production.

16.
Nat Ecol Evol ; 5(6): 726-732, 2021 06.
Article in English | MEDLINE | ID: mdl-33833422

ABSTRACT

Since 1989, China has established a system of powerful laws and regulations aimed to preserve its rich natural flora and fauna. However, this legislative framework still has shortcomings, in terms of sentencing standards across related crimes and the extent of scientific basis for sentences. Here, we review Chinese biodiversity protection laws and some example cases with the goal of suggesting ways to increase law compliance and thus better protect biodiversity. In particular, our suggestions involve regular updates of threat assessments based on scientific evidence including herbaceous plants, fungi and algae; considering ecological differences among the species groups and ensuing ecological damage and financial profit gained; and a differentiation of punishment between organized and individual crimes, with a preference for custodial sentences for the former and monetary fines for the latter, to comply better with international standards and to minimize the incentive to engage in such conduct.


Subject(s)
Biodiversity , Plants , China
17.
Sci Data ; 7(1): 351, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33060594

ABSTRACT

Trait-based analyses explaining the different responses of species and communities to environmental changes are increasing in frequency. European butterflies are an indicator group that responds rapidly to environmental changes with extensive citizen science contributions to documenting changes of abundance and distribution. Species traits have been used to explain long- and short-term responses to climate, land-use and vegetation changes. Studies are often characterised by limited trait sets being used, with risks that the relative roles of different traits are not fully explored. Butterfly trait information is dispersed amongst various sources and descriptions sometimes differ between sources. We have therefore drawn together multiple information sets to provide a comprehensive trait database covering 542 taxa and 25 traits described by 217 variables and sub-states of the butterflies of Europe and Maghreb (northwest Africa) which should serve for improved trait-based ecological, conservation-related, phylogeographic and evolutionary studies of this group of insects. We provide this data in two forms; the basic data and as processed continuous and multinomial data, to enhance its potential usage.


Subject(s)
Butterflies/classification , Africa, Northern , Animals , Biological Evolution , Conservation of Natural Resources , Databases, Factual , Ecology , Europe , Phylogeny
18.
Conserv Lett ; 13(4): e12713, 2020.
Article in English | MEDLINE | ID: mdl-32999687

ABSTRACT

Increasing evidence-synthesized in this paper-shows that economic growth contributes to biodiversity loss via greater resource consumption and higher emissions. Nonetheless, a review of international biodiversity and sustainability policies shows that the majority advocate economic growth. Since improvements in resource use efficiency have so far not allowed for absolute global reductions in resource use and pollution, we question the support for economic growth in these policies, where inadequate attention is paid to the question of how growth can be decoupled from biodiversity loss. Drawing on the literature about alternatives to economic growth, we explore this contradiction and suggest ways forward to halt global biodiversity decline. These include policy proposals to move beyond the growth paradigm while enhancing overall prosperity, which can be implemented by combining top-down and bottom-up governance across scales. Finally, we call the attention of researchers and policy makers to two immediate steps: acknowledge the conflict between economic growth and biodiversity conservation in future policies; and explore socioeconomic trajectories beyond economic growth in the next generation of biodiversity scenarios.

19.
BMC Ecol ; 20(1): 42, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32762674

ABSTRACT

The seventh BMC Ecology competition attracted entries from talented ecologists from around the world. Together, they showcase the beauty and diversity of life on our planet as well as providing an insight into the biological interactions found in nature. This editorial celebrates the winning images as selected by the Editor of BMC Ecology and senior members of the journal's editorial board. Enjoy!


Subject(s)
Ecology
SELECTION OF CITATIONS
SEARCH DETAIL
...