Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Environ Mol Mutagen ; 65(1-2): 4-24, 2024.
Article in English | MEDLINE | ID: mdl-38545858

ABSTRACT

ToxTracker is a mammalian cell reporter assay that predicts the genotoxic properties of compounds with high accuracy. By evaluating induction of various reporter genes that play a key role in relevant cellular pathways, it provides insight into chemical mode-of-action (MoA), thereby supporting discrimination of direct-acting genotoxicants and cytotoxic chemicals. A comprehensive interlaboratory validation trial was conducted, in which the principles outlined in OECD Guidance Document 34 were followed, with the primary objectives of establishing transferability and reproducibility of the assay and confirming the ability of ToxTracker to correctly classify genotoxic and non-genotoxic compounds. Reproducibility of the assay to predict genotoxic MoA was confirmed across participating laboratories and data were evaluated in terms of concordance with in vivo genotoxicity outcomes. Seven laboratories tested a total of 64 genotoxic and non-genotoxic chemicals that together cover a broad chemical space. The within-laboratory reproducibility (WLR) was up to 98% (73%-98% across participants) and the overall between-laboratory reproducibility (BLR) was 83%. This trial confirmed the accuracy of ToxTracker to predict in vivo genotoxicants with a sensitivity of 84.4% and a specificity of 91.2%. We concluded that ToxTracker is a robust in vitro assay for the accurate prediction of in vivo genotoxicity. Considering ToxTracker's robust standalone accuracy and that it can provide important information on the MoA of chemicals, it is seen as a valuable addition to the regulatory in vitro genotoxicity battery that may even have the potential to replace certain currently used in vitro battery assays.


Subject(s)
DNA Damage , Mammals , Animals , Humans , Mutagenicity Tests , Reproducibility of Results , Genes, Reporter
2.
Regul Toxicol Pharmacol ; 148: 105595, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38453128

ABSTRACT

Several New Approach Methodologies (NAMs) for hazard assessment of skin sensitisers have been formally validated. However, data regarding their applicability on certain product classes are limited. The purpose of this project was to provide initial evidence on the applicability domain of GARD™skin and GARD™potency for the product class of agrochemical formulations. For this proof of concept, 30 liquid and 12 solid agrochemical formulations were tested in GARDskin for hazard predictions. Formulations predicted as sensitisers were further evaluated in the GARDpotency assay to determine GHS skin sensitisation category. The selected formulations were of product types, efficacy groups and sensitisation hazard classes representative of the industry's products. The performance of GARDskin was estimated by comparing results to existing in vivo animal data. The overall accuracy, sensitivity, and specificity were 76.2% (32/42), 85.0% (17/20), and 68.2% (15/22), respectively, with the predictivity for liquid formulations being slightly higher compared to the solid formulations. GARDpotency correctly subcategorized 14 out of the 17 correctly predicted sensitisers. Lack of concordance was justifiable by compositional or borderline response analysis. In conclusion, GARDskin and GARDpotency showed satisfactory performance in this initial proof-of-concept study, which supports consideration of agrochemical formulations being within the applicability domain of the test methods.


Subject(s)
Agrochemicals , Dermatitis, Allergic Contact , Animals , Agrochemicals/chemistry , Irritants/pharmacology , Skin , Biological Assay , Proof of Concept Study , Animal Testing Alternatives
3.
Mutagenesis ; 39(2): 146-155, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38183270

ABSTRACT

The two-test in vitro battery for genotoxicity testing (Ames and micronucleus) has in the majority of cases replaced the three-test battery (as two-test plus mammalian cell gene mutation assay) for the routine testing of chemicals, pharmaceuticals, cosmetics, and agrochemical metabolites originating from food and feed as well as from water treatment. The guidance for testing agrochemical groundwater metabolites, however, still relies on the three-test battery. Data collated in this study from 18 plant protection and related materials highlights the disparity between the often negative Ames and in vitro chromosome aberration data and frequently positive in vitro mammalian cell gene mutation assays. Sixteen of the 18 collated materials with complete datasets were Ames negative, and overall had negative outcomes in in vitro chromosome damage tests (weight of evidence from multiple tests). Mammalian cell gene mutation assays (HPRT and/or mouse lymphoma assay (MLA)) were positive in at least one test for every material with this data. Where both MLA and HPRT tests were performed on the same material, the HPRT seemed to give fewer positive responses. In vivo follow-up tests included combinations of comet assays, unscheduled DNA synthesis, and transgenic rodent gene mutation assays, all gave negative outcomes. The inclusion of mammalian cell gene mutation assays in a three-test battery for groundwater metabolites is therefore not justified and leads to unnecessary in vivo follow-up testing.


Subject(s)
Hypoxanthine Phosphoribosyltransferase , Lymphoma , Mice , Animals , Mutagenicity Tests , Comet Assay , Rodentia , Agrochemicals , Micronucleus Tests , DNA Damage
4.
Mutat Res Rev Mutat Res ; 792: 108466, 2023.
Article in English | MEDLINE | ID: mdl-37643677

ABSTRACT

Error-corrected Next Generation Sequencing (ecNGS) is rapidly emerging as a valuable, highly sensitive and accurate method for detecting and characterizing mutations in any cell type, tissue or organism from which DNA can be isolated. Recent mutagenicity and carcinogenicity studies have used ecNGS to quantify drug-/chemical-induced mutations and mutational spectra associated with cancer risk. ecNGS has potential applications in genotoxicity assessment as a new readout for traditional models, for mutagenesis studies in 3D organotypic cultures, and for detecting off-target effects of gene editing tools. Additionally, early data suggest that ecNGS can measure clonal expansion of mutations as a mechanism-agnostic early marker of carcinogenic potential and can evaluate mutational load directly in human biomonitoring studies. In this review, we discuss promising applications, challenges, limitations, and key data initiatives needed to enable regulatory testing and adoption of ecNGS - including for advancing safety assessment, augmenting weight-of-evidence for mutagenicity and carcinogenicity mechanisms, identifying early biomarkers of cancer risk, and managing human health risk from chemical exposures.


Subject(s)
High-Throughput Nucleotide Sequencing , Mutagens , Humans , High-Throughput Nucleotide Sequencing/methods , Mutagenicity Tests , Mutation , Mutagens/toxicity , Carcinogens/toxicity , Carcinogenesis , Risk Assessment
6.
Environ Mol Mutagen ; 64(2): 105-122, 2023 02.
Article in English | MEDLINE | ID: mdl-36495195

ABSTRACT

Genotoxicity assessment is a critical component in the development and evaluation of chemicals. Traditional genotoxicity assays (i.e., mutagenicity, clastogenicity, and aneugenicity) have been limited to dichotomous hazard classification, while other toxicity endpoints are assessed through quantitative determination of points-of-departures (PODs) for setting exposure limits. The more recent higher-throughput in vitro genotoxicity assays, many of which also provide mechanistic information, offer a powerful approach for determining defined PODs for potency ranking and risk assessment. In order to obtain relevant human dose context from the in vitro assays, in vitro to in vivo extrapolation (IVIVE) models are required to determine what dose would elicit a concentration in the body demonstrated to be genotoxic using in vitro assays. Previous work has demonstrated that application of IVIVE models to in vitro bioactivity data can provide PODs that are protective of human health, but there has been no evaluation of how these models perform with in vitro genotoxicity data. Thus, the Genetic Toxicology Technical Committee, under the Health and Environmental Sciences Institute, conducted a case study on 31 reference chemicals to evaluate the performance of IVIVE application to genotoxicity data. The results demonstrate that for most chemicals considered here (20/31), the PODs derived from in vitro data and IVIVE are health protective relative to in vivo PODs from animal studies. PODs were also protective by assay target: mutations (8/13 chemicals), micronuclei (9/12), and aneugenicity markers (4/4). It is envisioned that this novel testing strategy could enhance prioritization, rapid screening, and risk assessment of genotoxic chemicals.


Subject(s)
DNA Damage , Mutagens , Animals , Humans , Mutation , Mutagens/toxicity , Risk Assessment , Mutagenicity Tests/methods
7.
Front Toxicol ; 4: 852856, 2022.
Article in English | MEDLINE | ID: mdl-35586187

ABSTRACT

Skin sensitization testing is a regulatory requirement for safety evaluations of pesticides in multiple countries. Globally harmonized test guidelines that include in chemico and in vitro methods reduce animal use, but no single assay is recommended as a complete replacement for animal tests. Defined approaches (DAs) that integrate data from multiple non-animal methods are accepted; however, the methods that comprise them have been evaluated using monoconstituent substances rather than mixtures or formulations. To address this data gap, we tested 27 agrochemical formulations in the direct peptide reactivity assay (DPRA), the KeratinoSens™ assay, and the human cell line activation test (h-CLAT). These data were used as inputs to evaluate three DAs for hazard classification of skin sensitization potential and two DAs for potency categorization. When compared to historical animal results, balanced accuracy for the DAs for predicting in vivo skin sensitization hazard (i.e., sensitizer vs. nonsensitizer) ranged from 56 to 78%. The best performing DA was the "2 out of 3 (2o3)" DA, in which the hazard classification was based on two concordant results from the DPRA, KeratinoSens, or h-CLAT. The KE 3/1 sequential testing strategy (STS), which uses h-CLAT and DPRA results, and the integrated testing strategy (ITSv2), which uses h-CLAT, DPRA, and an in silico hazard prediction from OECD QSAR Toolbox, had balanced accuracies of 56-57% for hazard classification. Of the individual test methods, KeratinoSens had the best performance for predicting in vivo hazard outcomes. Its balanced accuracy of 81% was similar to that of the 2o3 DA (78%). For predicting potency categories defined by the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (GHS), the correct classification rate of the STS was 52% and that of the ITSv2 was 43%. These results demonstrate that non-animal test methods have utility for evaluating the skin sensitization potential of agrochemical formulations as compared to animal reference data. While additional data generation is needed, testing strategies such as DAs anchored to human biology and mechanistic information provide a promising approach for agrochemical formulation testing.

8.
Environ Mol Mutagen ; 62(9): 512-525, 2021 11.
Article in English | MEDLINE | ID: mdl-34775645

ABSTRACT

We present a hypothetical case study to examine the use of a next-generation framework developed by the Genetic Toxicology Technical Committee of the Health and Environmental Sciences Institute for assessing the potential risk of genetic damage from a pharmaceutical perspective. We used etoposide, a genotoxic carcinogen, as a representative pharmaceutical for the purposes of this case study. Using the framework as guidance, we formulated a hypothetical scenario for the use of etoposide to illustrate the application of the framework to pharmaceuticals. We collected available data on etoposide considered relevant for assessment of genetic toxicity risk. From the data collected, we conducted a quantitative analysis to estimate margins of exposure (MOEs) to characterize the risk of genetic damage that could be used for decision-making regarding the predefined hypothetical use. We found the framework useful for guiding the selection of appropriate tests and selecting relevant endpoints that reflected the potential for genetic damage in patients. The risk characterization, presented as MOEs, allows decision makers to discern how much benefit is critical to balance any adverse effect(s) that may be induced by the pharmaceutical. Interestingly, pharmaceutical development already incorporates several aspects of the framework per regulations and health authority expectations. Moreover, we observed that quality dose response data can be obtained with carefully planned but routinely conducted genetic toxicity testing. This case study demonstrates the utility of the next-generation framework to quantitatively model human risk based on genetic damage, as applicable to pharmaceuticals.


Subject(s)
Antineoplastic Agents, Phytogenic/adverse effects , Etoposide/adverse effects , Animals , DNA Damage , Genomics , Humans
9.
ALTEX ; 38(2): 327-335, 2021.
Article in English | MEDLINE | ID: mdl-33511999

ABSTRACT

Efforts are underway to develop and implement nonanimal approaches which can characterize acute systemic lethality. A workshop was held in October 2019 to discuss developments in the prediction of acute oral lethality for chemicals and mixtures, as well as progress and needs in the understanding and modeling of mechanisms of acute lethality. During the workshop, each speaker led the group through a series of charge questions to determine clear next steps to progress the aims of the workshop. Participants concluded that a variety of approaches will be needed and should be applied in a tiered fashion. Non-testing approaches, including waiving tests, computational models for single chemicals, and calculating the acute lethality of mixtures based on the LD50 values of mixture components, could be used for some assessments now, especially in the very toxic or non-toxic classification ranges. Agencies can develop policies indicating contexts under which mathematical approaches for mixtures assessment are acceptable; to expand applicability, poorly predicted mixtures should be examined to understand discrepancies and adapt the approach. Transparency and an understanding of the variability of in vivo approaches are crucial to facilitate regulatory application of new approaches. In a replacement strategy, mechanistically based in vitro or in silico models will be needed to support non-testing approaches especially for highly acutely toxic chemicals. The workshop discussed approaches that can be used in the immediate or near term for some applications and identified remaining actions needed to implement approaches to fully replace the use of animals for acute systemic toxicity testing.


Subject(s)
Toxicity Tests, Acute , Animals , Computer Simulation , Humans
10.
J Appl Toxicol ; 41(6): 915-927, 2021 06.
Article in English | MEDLINE | ID: mdl-33124094

ABSTRACT

The regulatory community is transitioning to the use of nonanimal methods for dermal sensitization assessments; however, some in vitro assays have limitations in their domain of applicability depending on the properties of chemicals being tested. This study explored the utility of epidermal sensitization assay (EpiSensA) to evaluate the sensitization potential of complex and/or "difficult to test" chemicals. Assay performance was evaluated by testing a set of 20 test chemicals including 10 methacrylate esters, 5 silicone-based compounds, 3 crop protection formulations, and 2 surfactant mixtures; each had prior in vivo data plus some in silico and in vitro data. Using the weight of evidence (WoE) assessments by REACH Lead Registrants, 14 of these chemicals were sensitizers and, six were nonsensitizers based on in vivo studies (local lymph node assay [LLNA] and/or guinea pig studies). The EpiSensA correctly predicted 16/20 materials with three test materials as false positive and one silane as false negative. This silane, classified as weak sensitizer via LLNA, also gave a "false negative" result in the KeratinoSens™ assay. Overall, consistent with prior evaluations, the EpiSensA demonstrated an accuracy level of 80% relative to available in vivo WoE assessments. In addition, potency classification based on the concentration showing positive marker gene expression of EpiSensA was performed. The EpiSensA correctly predicted the potency for all seven sensitizing methacrylates classified as weak potency via LLNA (EC3 ≥ 10%). In summary, EpiSensA could identify dermal sensitization potential of these test substances and mixtures, and continues to show promise as an in vitro alternative method for dermal sensitization.


Subject(s)
Agrochemicals/toxicity , Skin Tests , Allergens , Animal Testing Alternatives/methods , Animals , Biological Assay , Cell Line , Dermatitis, Allergic Contact , Epidermis , Guinea Pigs , Haptens , Humans , In Vitro Techniques , Local Lymph Node Assay , Skin
11.
Regul Toxicol Pharmacol ; 112: 104592, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32017962

ABSTRACT

The need to develop new tools and increase capacity to test pharmaceuticals and other chemicals for potential adverse impacts on human health and the environment is an active area of development. Much of this activity was sparked by two reports from the US National Research Council (NRC) of the National Academies of Sciences, Toxicity Testing in the Twenty-first Century: A Vision and a Strategy (2007) and Science and Decisions: Advancing Risk Assessment (2009), both of which advocated for "science-informed decision-making" in the field of human health risk assessment. The response to these challenges for a "paradigm shift" toward using new approach methodologies (NAMS) for safety assessment has resulted in an explosion of initiatives by numerous organizations, but, for the most part, these have been carried out independently and are not coordinated in any meaningful way. To help remedy this situation, a framework that presents a consistent set of criteria, universal across initiatives, to evaluate a NAM's fit-for-purpose was developed by a multi-stakeholder group of industry, academic, and regulatory experts. The goal of this framework is to support greater consistency across existing and future initiatives by providing a structure to collect relevant information to build confidence that will accelerate, facilitate and encourage development of new NAMs that can ultimately be used within the appropriate regulatory contexts. In addition, this framework provides a systematic approach to evaluate the currently-available NAMs and determine their suitability for potential regulatory application. This 3-step evaluation framework along with the demonstrated application with case studies, will help build confidence in the scientific understanding of these methods and their value for chemical assessment and regulatory decision-making.


Subject(s)
Decision Making , Safety Management , Humans , Risk Assessment , Toxicity Tests
12.
Environ Mol Mutagen ; 61(1): 94-113, 2020 01.
Article in English | MEDLINE | ID: mdl-31709603

ABSTRACT

We recently published a next generation framework for assessing the risk of genomic damage via exposure to chemical substances. The framework entails a systematic approach with the aim to quantify risk levels for substances that induce genomic damage contributing to human adverse health outcomes. Here, we evaluated the utility of the framework for assessing the risk for industrial chemicals, using the case of benzene. Benzene is a well-studied substance that is generally considered a genotoxic carcinogen and is known to cause leukemia. The case study limits its focus on occupational and general population health as it relates to benzene exposure. Using the framework as guidance, available data on benzene considered relevant for assessment of genetic damage were collected. Based on these data, we were able to conduct quantitative analyses for relevant data sets to estimate acceptable exposure levels and to characterize the risk of genetic damage. Key observations include the need for robust exposure assessments, the importance of information on toxicokinetic properties, and the benefits of cheminformatics. The framework points to the need for further improvement on understanding of the mechanism(s) of action involved, which would also provide support for the use of targeted tests rather than a prescribed set of assays. Overall, this case study demonstrates the utility of the next generation framework to quantitatively model human risk on the basis of genetic damage, thereby enabling a new, innovative risk assessment concept. Environ. Mol. Mutagen. 61:94-113, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Subject(s)
Benzene/toxicity , Carcinogens/toxicity , Mutagenesis/drug effects , Mutagens/toxicity , Animals , Benzene/metabolism , Carcinogens/metabolism , DNA Damage/drug effects , Environmental Exposure/adverse effects , Humans , Leukemia/chemically induced , Leukemia/genetics , Mutagenicity Tests/methods , Mutagens/metabolism , Occupational Exposure/adverse effects , Risk Assessment/methods
13.
Toxicology ; 423: 84-94, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31125584

ABSTRACT

We previously demonstrated that the Connectivity Map (CMap) (Lamb et al., 2006) concept can be successfully applied to a predictive toxicology paradigm to generate meaningful MoA-based connections between chemicals (De Abrew et al., 2016). Here we expand both the chemical and biological (cell lines) domain for the method and demonstrate two applications, both in the area of read across. In the first application we demonstrate CMap's utility as a tool for testing biological relevance of source chemicals (analogs) during a chemistry led read across exercise. In the second application we demonstrate how CMap can be used to identify functionally relevant source chemicals (analogs) for a structure of interest (SOI)/target chemical with minimal knowledge of chemical structure. Finally, we highlight four factors: promiscuity of chemical, dose, cell line and timepoint as having significant impact on the output. We discuss the biological relevance of these four factors and incorporate them into a work flow.


Subject(s)
Hazardous Substances/toxicity , Risk Assessment/methods , Animal Testing Alternatives , Cell Line , Databases, Factual , Hazardous Substances/chemistry , Humans , Structure-Activity Relationship , Transcriptome/drug effects
14.
Environ Mol Mutagen ; 60(6): 559-562, 2019 07.
Article in English | MEDLINE | ID: mdl-30848522

ABSTRACT

Cell line-based in vitro testing has been widely used as an important component of the genotoxicity testing battery; however, the use of cell lines is constrained by several limitations, including the genetic drift and variability. A study recently reported in the literature comprehensively examined genomic changes in a large number of cell lines and reported extensive genetic variations within the same cell lines across passage numbers and laboratories, even for single-cell derived subclones. The primary objective of this communication is to raise awareness and stimulate discussion within the genotoxicity testing community of the extent of genetic variability of cell lines in general and how these variables could potentially influence the results and reproducibility of genotoxicity testing. Meanwhile, some recommendations for good cell culture practices are highlighted to mitigate, at least to some extent, the concern about genetic variation. Environ. Mol. Mutagen. 60:559-562, 2019. © 2019 Wiley Periodicals, Inc.


Subject(s)
Genomic Instability/drug effects , Genomic Instability/genetics , Mutagens/toxicity , Animals , Cell Line , Genetic Variation/drug effects , Genetic Variation/genetics , Humans , Mutagenicity Tests/methods , Reproducibility of Results
15.
Neurotoxicology ; 73: 17-30, 2019 07.
Article in English | MEDLINE | ID: mdl-30786249

ABSTRACT

Developmental neurotoxicity (DNT) is an important endpoint for the safety assessment of chemicals. However, the current in vivo animal model for DNT assessment is resource-intensive and may not fully capture all mechanisms that may be relevant to DNT in humans. As a result, there is a growing need for more reliable, time- and cost-efficient approaches for DNT evaluation. Toward this end, many stem/progenitor cell-based in vitro models and alternative organism-based models are becoming available with the potential for high throughput screening of DNT. Meanwhile, with advances in the knowledgebase of DNT molecular mechanisms and the identification of DNT-related adverse outcome pathways (AOP) there is potential to develop a mechanism-based integrated testing strategy for DNT assessment. This review summarizes the state of science regarding currently available human stem/progenitor cell-based in vitro models and alternative organism-based models that could be used for DNT testing. In addition, the current knowledge regarding DNT AOPs is reviewed to identify common key events that could serve as critical endpoints to assess multiple AOPs that underlie DNT. Following the identification of common key events, a streamlined strategy is proposed using alternative models to assess the DNT potential of chemicals as an early screening approach for chemicals in development.


Subject(s)
Animal Testing Alternatives , Brain/drug effects , Drug Development/methods , High-Throughput Screening Assays , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurotoxicity Syndromes/etiology , Toxicity Tests , Animals , Brain/growth & development , Brain/metabolism , Brain/pathology , Cells, Cultured , Humans , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/physiopathology , Reproducibility of Results , Risk Assessment
16.
Environ Mol Mutagen ; 60(1): 42-46, 2019 01.
Article in English | MEDLINE | ID: mdl-30338550

ABSTRACT

The Pig-a assay is an emerging and promising in vivo method to determine mutagenic potential of chemicals. Since its development in 2008, remarkable progress has been made in harmonizing and characterizing the test procedures, primarily using known mutagenic chemicals. The purpose of the present study was to evaluate specificity of the Pig-a assay using two nongenotoxic and well-characterized rodent liver carcinogens, phenobarbital and clofibrate, in male F344/DuCrl rats. Daily oral administration of phenobarbital or clofibrate at established hepatotoxic doses for 28 days resulted in substantial hepatic alterations, however, did not increase the frequency of Pig-a mutation markers (RETCD59- and RBCCD59- ) compared to vehicle control or pre-exposure (Day -5) mutant frequencies. These results are consistent with the existing literature on the nonmutagenic mode of action (MoA) of phenobarbital and clofibrate liver tumors. The present study contributes to the limited, but expanding evidence on the specificity of the Pig-a assay and further for the investigations of carcinogenic MoAs, i.e., mutagenic or nonmutagenic potential of chemicals. Environ. Mol. Mutagen. 60:42-46, 2019. © 2018 Wiley Periodicals, Inc.


Subject(s)
Carcinogens/toxicity , Clofibrate/toxicity , Glycosylphosphatidylinositols/genetics , Liver Neoplasms/chemically induced , Mutagenicity Tests/methods , Phenobarbital/toxicity , Animals , Biological Assay , Liver/drug effects , Liver Neoplasms/pathology , Male , Mutation/drug effects , Pilot Projects , Rats , Rats, Inbred F344 , Sensitivity and Specificity
17.
Curr Opin Toxicol ; 15(1): 55-63, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-32030360

ABSTRACT

The more than 80,000 chemicals in commerce present a challenge for hazard assessments that toxicity testing in the 21st century strives to address through high-throughput screening (HTS) assays. Assessing chemical effects on human development adds an additional layer of complexity to the screening, with a need to capture complex and dynamic events essential for proper embryo-fetal development. HTS data from ToxCast/Tox21 informs systems toxicology models, which incorporate molecular targets and biological pathways into mechanistic models describing the effects of chemicals on human cells, 3D organotypic culture models, and small model organisms. Adverse Outcome Pathways (AOPs) provide a useful framework for integrating the evidence derived from these in silico and in vitro systems to inform chemical hazard characterization. To illustrate this formulation, we have built an AOP for developmental toxicity through a mode of action linked to embryonic vascular disruption (Aop43). Here, we review the model for quantitative prediction of developmental vascular toxicity from ToxCast HTS data and compare the HTS results to functional vascular development assays in complex cell systems, virtual tissues, and small model organisms. ToxCast HTS predictions from several published and unpublished assays covering different aspects of the angiogenic cycle were generated for a test set of 38 chemicals representing a range of putative vascular disrupting compounds (pVDCs). Results boost confidence in the capacity to predict adverse developmental outcomes from HTS in vitro data and model computational dynamics for in silico reconstruction of developmental systems biology. Finally, we demonstrate the integration of the AOP and developmental systems toxicology to investigate the unique modes of action of two angiogenesis inhibitors.

18.
J Pharmacol Toxicol Methods ; 94(Pt 2): 1-15, 2018.
Article in English | MEDLINE | ID: mdl-30099091

ABSTRACT

While the HPLC/UV (high performance liquid chromatography coupled with ultra-violet spectrometry)-based DPRA (Direct Peptide Reactivity Assay) identifies dermal sensitizers with approximately 80% accuracy, the low selectivity and sensitivity of the HPLC/UV-based DPRA poses challenges to accurately identify the sensitization potential of certain chemicals. In this study, a high performance liquid chromatography coupled with tandem mass spectrometry (HPLC/MS-MS)-based DPRA was developed and validated according to the test guideline (OECD TG 442C). The final results were compared with the results from the traditional HPLC/UV-based guideline DPRA. This HPLC/MS-MS-based DPRA demonstrated similar performance compared to HPLC/UV-based DPRA using known dermal sensitizers and non-sensitizers according to the test guideline (OECD TG 442C). Following the validation, a challenge set of chemicals with either overlapping retention time with peptides, or higher hydrophobicity or chemicals potentially forming non-covalent interactions with peptides were assessed for dermal sensitization potential using both methods and the results were compared to existing in vivo data. The HPLC/MS-MS-based DPRA correctly predicted these chemicals as sensitizers or non-sensitizers; however, the HPLC/UV-based DPRA resulted in false-positive predictions for hydrophobic substances, chemicals with UV peaks overlapping with those of the peptide(s), and compounds that non-covalently interact with the peptides. These findings demonstrate the broader applicability and better sensitivity and selectivity of the LC/MS-MS-based DPRA over the traditional HPLC/UV-based guideline DPRA.


Subject(s)
Chromatography, High Pressure Liquid/methods , Peptides/chemistry , Spectrophotometry, Ultraviolet/methods , Tandem Mass Spectrometry/methods , Calibration , Chromatography, High Pressure Liquid/standards , Cysteine/chemistry , Lysine/chemistry , Peptides/metabolism , Spectrophotometry, Ultraviolet/standards , Tandem Mass Spectrometry/standards
19.
Reprod Toxicol ; 70: 82-96, 2017 06.
Article in English | MEDLINE | ID: mdl-28527947

ABSTRACT

Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing.


Subject(s)
Angiogenesis Inhibitors/toxicity , Cardiovascular System/drug effects , Cyclohexanes/toxicity , High-Throughput Screening Assays , Isoindoles/toxicity , Neovascularization, Physiologic/drug effects , Sesquiterpenes/toxicity , Teratogens/toxicity , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , Cardiovascular System/embryology , Embryonic Development/drug effects , O-(Chloroacetylcarbamoyl)fumagillol , Organogenesis/drug effects , Rabbits , Rats
20.
Reprod Toxicol ; 71: 16-31, 2017 08.
Article in English | MEDLINE | ID: mdl-28414088

ABSTRACT

Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High-throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing.

SELECTION OF CITATIONS
SEARCH DETAIL
...