Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 122(11): 2125-2146, 2023 06 06.
Article in English | MEDLINE | ID: mdl-36523158

ABSTRACT

The twin arginine translocase (Tat) exports folded proteins across bacterial membranes. The putative pore-forming or membrane-weakening component (TatAd in B. subtilis) is anchored to the lipid bilayer via an unusually short transmembrane α-helix (TMH), with less than 16 residues. Its tilt angle in different membranes was analyzed under hydrophobic mismatch conditions, using synchrotron radiation circular dichroism and solid-state NMR. Positive mismatch (introduced either by reconstitution in short-chain lipids or by extending the hydrophobic TMH length) increased the helix tilt of the TMH as expected. Negative mismatch (introduced either by reconstitution in long-chain lipids or by shortening the TMH), on the other hand, led to protein aggregation. These data suggest that the TMH of TatA is just about long enough for stable membrane insertion. At the same time, its short length is a crucial factor for successful translocation, as demonstrated here in native membrane vesicles using an in vitro translocation assay. Furthermore, when reconstituted in model membranes with negative spontaneous curvature, the TMH was found to be aligned parallel to the membrane surface. This intrinsic ability of TatA to flip out of the membrane core thus seems to play a key role in its membrane-destabilizing effect during Tat-dependent translocation.


Subject(s)
Escherichia coli Proteins , Membrane Transport Proteins , Membrane Transport Proteins/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Escherichia coli Proteins/metabolism
2.
Sci Rep ; 10(1): 18211, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097750

ABSTRACT

Computer simulation provides an increasingly realistic picture of large-scale conformational change of proteins, but investigations remain fundamentally constrained by the femtosecond timestep of molecular dynamics simulations. For this reason, many biologically interesting questions cannot be addressed using accessible state-of-the-art computational resources. Here, we report the development of an all-atom Monte Carlo approach that permits the modelling of the large-scale conformational change of proteins using standard off-the-shelf computational hardware and standard all-atom force fields. We demonstrate extensive thermodynamic characterization of the folding process of the α-helical Trp-cage, the Villin headpiece and the ß-sheet WW-domain. We fully characterize the free energy landscape, transition states, energy barriers between different states, and the per-residue stability of individual amino acids over a wide temperature range. We demonstrate that a state-of-the-art intramolecular force field can be combined with an implicit solvent model to obtain a high quality of the folded structures and also discuss limitations that still remain.


Subject(s)
Protein Conformation , Proteins/chemistry , Computer Simulation , Hydrogen Bonding , Models, Chemical , Molecular Dynamics Simulation , Monte Carlo Method , Protein Folding , Thermodynamics
3.
Phys Chem Chem Phys ; 19(2): 1677-1685, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27995260

ABSTRACT

Hydration free energy estimation of small molecules from all-atom simulations was widely investigated in recent years, as it provides an essential test of molecular force fields and our understanding of solvation effects. While explicit solvent representations result in highly accurate models, they also require extensive sampling due to the high number of solvent degrees of freedom. Implicit solvent models, such as those based on the generalized Born model for electrostatic solvation effects and a solvent accessible surface area term for nonpolar contributions (GBSA), significantly reduce the number of degrees of freedom and the computational cost to estimate hydration free energies. However, a recent survey revealed a gap in the accuracy between explicit TIP3P solvent estimates and those computed with many common GBSA models. Here we address this shortcoming by providing a thorough comparison of the performance of three implicit solvent models with different nonpolar contributions and a generalized Born term to estimate experimental hydration free energies. Starting with a minimal set of only ten atom types, we demonstrate that a nonpolar term with atom type dependent surface tension coefficients in combination with an accurate generalized Born term and fully optimized parameters performs best in estimating hydration free energies, even yielding comparable results to the explicit TIP3P water model. Analysis of our results provides evidence that the asymmetric behavior of water around oppositely charged atoms is one of the main sources of error for two of the three implicit solvent models. Explicitly accounting for this effect in the parameterization reduces the corresponding errors, suggesting this as a general strategy for improving implicit solvent models. The findings presented here will help to improve the existing generalized Born based implicit solvent models implemented in state-of-the-art molecular simulation packages.

4.
Nanomedicine ; 12(5): 1409-19, 2016 07.
Article in English | MEDLINE | ID: mdl-26773462

ABSTRACT

UNLABELLED: Interactions between nanoparticles (NPs) and biomembranes depend on the physicochemical properties of the NPs, such as size and surface charge. Here we report on the size-dependent interaction of gold nanoparticles (AuNPs), stabilized with ligands differing in charge, i.e. sodium 3-(diphenylphosphino)benzene sulfonate (TPPMS) and sodium 3,3',3″-triphenylphosphine sulfonate (TPPTS), respectively, with artificial membranes (black lipid membranes; BLMs) and HeLa cells. The TPPTS-stabilized AuNPs affect BLMs at lower size than TPPMS-stabilized ones. On HeLa cells we found decreasing cytotoxicity with increasing particle size, however, with an overall lower cytotoxicity for TPPTS-stabilized AuNPs. We attribute size-dependent BLM properties as well as reduced cytotoxicity of TPPTS-stabilized AuNPs to weaker shielding of the AuNP core when stabilized with TPPTS. We hypothesize that the partially unshielded hydrophobic gold core can embed into the hydrophobic membrane interior. Thereby we demonstrate that ligand-dependent cytotoxicity of NP can occur even when the NPs are not translocated through the membrane. FROM THE CLINICAL EDITOR: The use of nanoparticles (NPs) in the clinical setting means that there will be interactions between NPs and cell membranes. The authors investigated the underlying processes concerning cellular uptake and potential toxicity of gold nanoparticles (AuNPs) using particles with ligands different sizes and charges. The findings should further enhance existing knowledge on future design of safer NPs in the clinic.


Subject(s)
Gold , Lipid Bilayers , Metal Nanoparticles , Cell Membrane , Humans , Surface Properties
5.
J Comput Chem ; 35(28): 2027-39, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25243932

ABSTRACT

In most implicit continuum models, membranes are represented as heterogeneous dielectric environments, but their treatment within computationally efficient generalized Born (GB) models is challenging. Despite several previous attempts, an adequate description of multiple dielectric regions in implicit GB-based membrane models that reproduce the qualitative and quantitative features of Poisson-Boltzmann (PB) electrostatics remains an unmet prerequisite of qualitatively correct implicit membrane models. A novel scheme (SLIM) to decompose one environment consisting of multiple dielectric regions into a sum of multiple environments consisting only of two dielectric regions each is proposed to solve this issue. These simpler environments can be treated with established GB methods. This approach captures qualitative features of PB electrostatic that are not present in previous models. Simulations of three membrane proteins demonstrate that this model correctly reproduces known properties of these proteins in agreement with experimental or other computational studies.


Subject(s)
Membranes, Artificial , Models, Theoretical , Poisson Distribution
6.
Proc Natl Acad Sci U S A ; 110(20): 8004-9, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23630249

ABSTRACT

Understanding the mechanism of toxicity of nanomaterials remains a challenge with respect to both mechanisms involved and product regulation. Here we show toxicity of ultrasmall gold nanoparticles (AuNPs). Depending on the ligand chemistry, 1.4-nm-diameter AuNPs failed electrophysiology-based safety testing using human embryonic kidney cell line 293 cells expressing human ether-á-go-go-Related gene (hERG), a Food and Drug Administration-established drug safety test. In patch-clamp experiments, phosphine-stabilized AuNPs irreversibly blocked hERG channels, whereas thiol-stabilized AuNPs of similar size had no effect in vitro, and neither particle blocked the channel in vivo. We conclude that safety regulations may need to be reevaluated and adapted to reflect the fact that the binding modality of surface functional groups becomes a relevant parameter for the design of nanoscale bioactive compounds.


Subject(s)
Ether-A-Go-Go Potassium Channels/physiology , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , ERG1 Potassium Channel , Electrocardiography/methods , Electrophysiology/methods , Ether-A-Go-Go Potassium Channels/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Nanotechnology/methods , Patch-Clamp Techniques , Potassium Channel Blockers/chemistry , Protein Binding , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL