Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 109(39): 15646-50, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-22652573

ABSTRACT

The effective design of an artificial photosynthetic system entails the optimization of several important interactions. Herein we report stopped-flow UV-visible (UV-vis) spectroscopy, X-ray crystallographic, density functional theory (DFT), and electrochemical kinetic studies of the Re(bipy-tBu)(CO)(3)(L) catalyst for the reduction of CO(2) to CO. A remarkable selectivity for CO(2) over H(+) was observed by stopped-flow UV-vis spectroscopy of [Re(bipy-tBu)(CO)(3)](-1). The reaction with CO(2) is about 25 times faster than the reaction with water or methanol at the same concentrations. X-ray crystallography and DFT studies of the doubly reduced anionic species suggest that the highest occupied molecular orbital (HOMO) has mixed metal-ligand character rather than being purely doubly occupied d(z)(2), which is believed to determine selectivity by favoring CO(2) (σ + π) over H(+) (σ only) binding. Electrocatalytic studies performed with the addition of Brönsted acids reveal a primary H/D kinetic isotope effect, indicating that transfer of protons to Re -CO(2) is involved in the rate limiting step. Lastly, the effects of electrode surface modification on interfacial electron transfer between a semiconductor and catalyst were investigated and found to affect the observed current densities for catalysis more than threefold, indicating that the properties of the electrode surface need to be addressed when developing a homogeneous artificial photosynthetic system.


Subject(s)
Carbon Monoxide/chemistry , Methanol/chemical synthesis , Photochemical Processes , Photosynthesis , Ruthenium/chemistry , Water/chemistry , Carbon Dioxide/chemistry , Crystallography, X-Ray , Kinetics
2.
Methods Mol Biol ; 497: 121-38, 2009.
Article in English | MEDLINE | ID: mdl-19107414

ABSTRACT

Post-translational modification by the small ubiquitin-like modifier (SUMO) family of proteins is an important cellular regulatory mechanism, and in recent years has been found to be involved in a large and diverse set of signaling pathways. Most of these SUMO-dependent functions appear to be mediated by the interaction between SUMO attached to the modified proteins and a "SUMO-binding motif" (SBM or SIM) on receptor proteins. Nuclear magnetic resonance (NMR) studies were instrumental in the identification of this SUMO-binding motif, and reveal that, depending on the sequence context, this motif can bind to SUMO in two opposing orientations. In this paper, we provide an overview of how NMR methods can be used to identify such short conserved binding motifs and structurally characterize their interaction with target proteins. These experiments are complementary to traditional biochemical methods and are applicable to the identification of other SUMO-binding motifs and to the studies of other ubiquitin-like modification systems.


Subject(s)
Amino Acid Motifs , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , SUMO-1 Protein/metabolism , Animals , Binding Sites , Humans , Models, Biological , Models, Molecular , Protein Binding , Protein Processing, Post-Translational , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL