Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
2.
Nat Immunol ; 23(4): 605-618, 2022 04.
Article in English | MEDLINE | ID: mdl-35352063

ABSTRACT

Autonomic nerves control organ function through the sympathetic and parasympathetic branches, which have opposite effects. In the bone marrow, sympathetic (adrenergic) nerves promote hematopoiesis; however, how parasympathetic (cholinergic) signals modulate hematopoiesis is unclear. Here, we show that B lymphocytes are an important source of acetylcholine, a neurotransmitter of the parasympathetic nervous system, which reduced hematopoiesis. Single-cell RNA sequencing identified nine clusters of cells that expressed the cholinergic α7 nicotinic receptor (Chrna7) in the bone marrow stem cell niche, including endothelial and mesenchymal stromal cells (MSCs). Deletion of B cell-derived acetylcholine resulted in the differential expression of various genes, including Cxcl12 in leptin receptor+ (LepR+) stromal cells. Pharmacologic inhibition of acetylcholine signaling increased the systemic supply of inflammatory myeloid cells in mice and humans with cardiovascular disease.


Subject(s)
Acetylcholine , Hematopoiesis , Animals , B-Lymphocytes , Cholinergic Agents , Hematopoiesis/genetics , Mice , Stem Cell Niche
3.
Cancer Cell ; 39(11): 1464-1478.e8, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34719426

ABSTRACT

Bone metastases are devastating complications of cancer. They are particularly common in prostate cancer (PCa), represent incurable disease, and are refractory to immunotherapy. We seek to define distinct features of the bone marrow (BM) microenvironment by analyzing single cells from bone metastatic prostate tumors, involved BM, uninvolved BM, and BM from cancer-free, orthopedic patients, and healthy individuals. Metastatic PCa is associated with multifaceted immune distortion, specifically exhaustion of distinct T cell subsets, appearance of macrophages with states specific to PCa bone metastases. The chemokine CCL20 is notably overexpressed by myeloid cells, as is its cognate CCR6 receptor on T cells. Disruption of the CCL20-CCR6 axis in mice with syngeneic PCa bone metastases restores T cell reactivity and significantly prolongs animal survival. Comparative high-resolution analysis of PCa bone metastases shows a targeted approach for relieving local immunosuppression for therapeutic effect.


Subject(s)
Bone Neoplasms/pathology , Bone Neoplasms/secondary , Chemokine CCL20/genetics , Prostatic Neoplasms/pathology , Receptors, CCR6/genetics , Up-Regulation , Animals , Bone Neoplasms/genetics , Bone Neoplasms/immunology , Case-Control Studies , Cell Line, Tumor , Chemokine CCL20/metabolism , Gene Expression Regulation, Neoplastic , Humans , Macrophages/immunology , Male , Mice , Myeloid Cells/immunology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Receptors, CCR6/metabolism , Single-Cell Analysis , T-Lymphocytes/immunology , Tumor Microenvironment
4.
Cell Stem Cell ; 28(12): 2090-2103.e9, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34551362

ABSTRACT

Extracellular vesicles (EVs) transfer complex biologic material between cells. However, the role of this process in vivo is poorly defined. Here, we demonstrate that osteoblastic cells in the bone marrow (BM) niche elaborate extracellular vesicles that are taken up by hematopoietic progenitor cells in vivo. Genotoxic or infectious stress rapidly increased stromal-derived extracellular vesicle transfer to granulocyte-monocyte progenitors. The extracellular vesicles contained processed tRNAs (tiRNAs) known to modulate protein translation. 5'-ti-Pro-CGG-1 was preferentially abundant in osteoblast-derived extracellular vesicles and, when transferred to granulocyte-monocyte progenitors, increased protein translation, cell proliferation, and myeloid differentiation. Upregulating EV transfer improved hematopoietic recovery from genotoxic injury and survival from fungal sepsis. Therefore, EV-mediated tiRNA transfer provides a stress-modulated signaling axis in the BM niche distinct from conventional cytokine-driven stress responses.


Subject(s)
Extracellular Vesicles , Hematopoietic Stem Cells , Bone Marrow , Bone Marrow Cells , Hematopoiesis
5.
Nat Med ; 25(11): 1761-1771, 2019 11.
Article in English | MEDLINE | ID: mdl-31700184

ABSTRACT

A sedentary lifestyle, chronic inflammation and leukocytosis increase atherosclerosis; however, it remains unclear whether regular physical activity influences leukocyte production. Here we show that voluntary running decreases hematopoietic activity in mice. Exercise protects mice and humans with atherosclerosis from chronic leukocytosis but does not compromise emergency hematopoiesis in mice. Mechanistically, exercise diminishes leptin production in adipose tissue, augmenting quiescence-promoting hematopoietic niche factors in leptin-receptor-positive stromal bone marrow cells. Induced deletion of the leptin receptor in Prrx1-creERT2; Leprfl/fl mice reveals that leptin's effect on bone marrow niche cells regulates hematopoietic stem and progenitor cell (HSPC) proliferation and leukocyte production, as well as cardiovascular inflammation and outcomes. Whereas running wheel withdrawal quickly reverses leptin levels, the impact of exercise on leukocyte production and on the HSPC epigenome and transcriptome persists for several weeks. Together, these data show that physical activity alters HSPCs via modulation of their niche, reducing hematopoietic output of inflammatory leukocytes.


Subject(s)
Atherosclerosis/therapy , Cardiovascular Diseases/therapy , Hematopoietic Stem Cells/metabolism , Inflammation/therapy , Physical Conditioning, Animal , Adipose Tissue/metabolism , Animals , Atherosclerosis/prevention & control , Cardiovascular Diseases/genetics , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/prevention & control , Epigenome/genetics , Exercise/physiology , Hematopoiesis/genetics , Hematopoiesis/physiology , Homeodomain Proteins/genetics , Humans , Inflammation/physiopathology , Leukocytes/metabolism , Leukocytosis/physiopathology , Leukocytosis/therapy , Mice , Receptors, Leptin/genetics , Sedentary Behavior , Transcriptome/genetics
6.
Cell Stem Cell ; 25(4): 570-583.e7, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31279774

ABSTRACT

Stromal cell populations that maintain hematopoietic stem and progenitor cells (HSPCs) are generally characterized in steady-state conditions. Here, we report a comprehensive atlas of bone marrow stromal cell subpopulations under homeostatic and stress conditions using mass cytometry (CyTOF)-based single-cell protein analysis. We identified 28 subsets of non-hematopoietic cells during homeostasis, 14 of which expressed hematopoietic regulatory factors. Irradiation-based conditioning for HSPC transplantation led to the loss of most of these populations, including the LeptinR+ and Nestin+ subsets. In contrast, a subset expressing Ecto-5'-nucleotidase (CD73) was retained and a specific CD73+NGFRhigh population expresses high levels of cytokines during homeostasis and stress. Genetic ablation of CD73 compromised HSPC transplantation in an acute setting without long-term changes in bone marrow HSPCs. Thus, this protein-based expression mapping reveals distinct sets of stromal cells in the bone marrow and how they change in clinically relevant stress settings to contribute to early stages of hematopoietic regeneration.


Subject(s)
Bone Marrow Cells/metabolism , Stress, Physiological/physiology , Stromal Cells/metabolism , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Animals , Atlases as Topic , Bone Marrow Cells/pathology , Cells, Cultured , Hematopoiesis , Hematopoietic Stem Cell Transplantation , Homeostasis , Humans , Mass Spectrometry , Mice , Mice, Knockout , Nestin/metabolism , Receptor, Nerve Growth Factor/metabolism , Receptors, Leptin/metabolism , Stem Cell Niche , Stromal Cells/pathology
7.
Cell ; 177(7): 1915-1932.e16, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31130381

ABSTRACT

Stroma is a poorly defined non-parenchymal component of virtually every organ with key roles in organ development, homeostasis, and repair. Studies of the bone marrow stroma have defined individual populations in the stem cell niche regulating hematopoietic regeneration and capable of initiating leukemia. Here, we use single-cell RNA sequencing (scRNA-seq) to define a cellular taxonomy of the mouse bone marrow stroma and its perturbation by malignancy. We identified seventeen stromal subsets expressing distinct hematopoietic regulatory genes spanning new fibroblastic and osteoblastic subpopulations including distinct osteoblast differentiation trajectories. Emerging acute myeloid leukemia impaired mesenchymal osteogenic differentiation and reduced regulatory molecules necessary for normal hematopoiesis. These data suggest that tissue stroma responds to malignant cells by disadvantaging normal parenchymal cells. Our taxonomy of the stromal compartment provides a comprehensive bone marrow cell census and experimental support for cancer cell crosstalk with specific stromal elements to impair normal tissue function and thereby enable emergent cancer.


Subject(s)
Bone Marrow Cells/metabolism , Cell Differentiation , Homeostasis , Leukemia, Myeloid, Acute/metabolism , Osteoblasts/metabolism , Osteogenesis , Tumor Microenvironment , Animals , Bone Marrow Cells/pathology , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Osteoblasts/pathology , Stromal Cells/metabolism , Stromal Cells/pathology
8.
Circ Res ; 124(9): 1372-1385, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30782088

ABSTRACT

RATIONALE: After a stroke, patients frequently experience altered systemic immunity resulting in peripheral immunosuppression and higher susceptibility to infections, which is at least partly attributed to lymphopenia. The mechanisms that profoundly change the systemic leukocyte repertoire after stroke are incompletely understood. Emerging evidence indicates that stroke alters hematopoietic output of the bone marrow. OBJECTIVE: To explore the mechanisms that lead to defects of B lymphopoiesis after ischemic stroke. METHODS AND RESULTS: We here report that ischemic stroke triggers brain-bone marrow communication via hormonal long-range signals that regulate hematopoietic B lineage decisions. Bone marrow fluorescence-activated cell sorter analyses and serial intravital microscopy indicate that transient middle cerebral artery occlusion in mice arrests B-cell development beginning at the pro-B-cell stage. This phenotype was not rescued in Myd88-/- and TLR4-/- mice with disrupted TLR (Toll-like receptor) signaling or after blockage of peripheral sympathetic nerves. Mechanistically, we identified stroke-induced glucocorticoid release as the main instigator of B lymphopoiesis defects. B-cell lineage-specific deletion of the GR (glucocorticoid receptor) in CD19-Cre loxP Nr3c1 mice attenuated lymphocytopenia after transient middle cerebral artery. In 20 patients with acute stroke, increased cortisol levels inversely correlated with blood lymphocyte numbers. CONCLUSIONS: Our data demonstrate that the hypothalamic-pituitary-adrenal axis mediates B lymphopoiesis defects after ischemic stroke.


Subject(s)
Adrenal Cortex Hormones/blood , B-Lymphocytes/metabolism , Bone Marrow Cells/metabolism , Lymphopoiesis , Receptors, Glucocorticoid/blood , Stroke/blood , Aged , Animals , B-Lymphocytes/cytology , Bone Marrow/metabolism , Bone Marrow Cells/cytology , Female , Humans , Hypothalamo-Hypophyseal System/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Pituitary-Adrenal System/physiopathology , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Stroke/genetics , Stroke/physiopathology
9.
Cancer Res ; 78(18): 5300-5314, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30065048

ABSTRACT

The presence of disseminated tumor cells in breast cancer patient bone marrow aspirates predicts decreased recurrence-free survival. Although it is appreciated that physiologic, pathologic, and therapeutic conditions impact hematopoiesis, it remains unclear whether targeting hematopoiesis presents opportunities for limiting bone metastasis. Using preclinical breast cancer models, we discovered that marrow from mice treated with the bisphosphonate zoledronic acid (ZA) are metastasis-suppressive. Specifically, ZA modulated hematopoietic myeloid/osteoclast progenitor cell (M/OCP) lineage potential to activate metastasis-suppressive activity. Granulocyte-colony stimulating factor (G-CSF) promoted ZA resistance by redirecting M/OCP differentiation. We identified M/OCP and bone marrow transcriptional programs associated with metastasis suppression and ZA resistance. Analysis of patient blood samples taken at randomization revealed that women with high-plasma G-CSF experienced significantly worse outcome with adjuvant ZA than those with lower G-CSF levels. Our findings support discovery of therapeutic strategies to direct M/OCP lineage potential and biomarkers that stratify responses in patients at risk of recurrence.Significance: Bone marrow myeloid/osteoclast progenitor cell lineage potential has a profound impact on breast cancer bone metastasis and can be modulated by G-CSF and bone-targeting agents. Cancer Res; 78(18); 5300-14. ©2018 AACR.


Subject(s)
Bone Marrow Cells/cytology , Breast Neoplasms/pathology , Cell Lineage , Hematopoietic Stem Cells/cytology , Neoplasm Metastasis/prevention & control , Animals , Antineoplastic Agents/pharmacology , Biomarkers/metabolism , Bone Marrow/pathology , Bone Neoplasms/prevention & control , Cell Differentiation , Cell Line, Tumor , Female , Granulocyte Colony-Stimulating Factor/metabolism , Hematopoiesis , Humans , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Nude , Neoplasm Recurrence, Local , Osteoclasts/cytology , Osteoclasts/metabolism , Zoledronic Acid/pharmacology
10.
Genome Biol ; 19(1): 78, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29921301

ABSTRACT

Recent single-cell RNA-seq protocols based on droplet microfluidics use massively multiplexed barcoding to enable simultaneous measurements of transcriptomes for thousands of individual cells. The increasing complexity of such data creates challenges for subsequent computational processing and troubleshooting of these experiments, with few software options currently available. Here, we describe a flexible pipeline for processing droplet-based transcriptome data that implements barcode corrections, classification of cell quality, and diagnostic information about the droplet libraries. We introduce advanced methods for correcting composition bias and sequencing errors affecting cellular and molecular barcodes to provide more accurate estimates of molecular counts in individual cells.


Subject(s)
DNA Barcoding, Taxonomic/methods , RNA/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Cell Line, Tumor , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Humans , K562 Cells , Male , Mice , Mice, Inbred C57BL , Microfluidics/methods , Software , Transcriptome/genetics
12.
J Clin Invest ; 128(1): 281-293, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29202481

ABSTRACT

Nervous system injury is a frequent result of cancer therapy involving cranial irradiation, leaving patients with marked memory and other neurobehavioral disabilities. Here, we report an unanticipated link between bone marrow and brain in the setting of radiation injury. Specifically, we demonstrate that bone marrow-derived monocytes and macrophages are essential for structural and functional repair mechanisms, including regeneration of cerebral white matter and improvement in neurocognitive function. Using a granulocyte-colony stimulating factor (G-CSF) receptor knockout mouse model in combination with bone marrow cell transplantation, MRI, and neurocognitive functional assessments, we demonstrate that bone marrow-derived G-CSF-responsive cells home to the injured brain and are critical for altering neural progenitor cells and brain repair. Additionally, compared with untreated animals, animals that received G-CSF following radiation injury exhibited enhanced functional brain repair. Together, these results demonstrate that, in addition to its known role in defense and debris removal, the hematopoietic system provides critical regenerative drive to the brain that can be modulated by clinically available agents.


Subject(s)
Bone Marrow Cells , Bone Marrow Transplantation , Brain/physiology , Granulocyte Colony-Stimulating Factor/pharmacology , Neurocognitive Disorders , Radiation Injuries, Experimental , Regeneration/drug effects , Animals , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Disease Models, Animal , Granulocyte Colony-Stimulating Factor/genetics , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Monocytes/metabolism , Monocytes/pathology , Neurocognitive Disorders/genetics , Neurocognitive Disorders/metabolism , Neurocognitive Disorders/physiopathology , Neurocognitive Disorders/therapy , Radiation Injuries, Experimental/genetics , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/physiopathology , Radiation Injuries, Experimental/therapy , Regeneration/genetics , Regeneration/radiation effects
13.
Science ; 358(6367)2017 12 01.
Article in English | MEDLINE | ID: mdl-29191879

ABSTRACT

Bone marrow-derived myeloid cells can accumulate within tumors and foster cancer outgrowth. Local immune-neoplastic interactions have been intensively investigated, but the contribution of the systemic host environment to tumor growth remains poorly understood. Here, we show in mice and cancer patients (n = 70) that lung adenocarcinomas increase bone stromal activity in the absence of bone metastasis. Animal studies reveal that the cancer-induced bone phenotype involves bone-resident osteocalcin-expressing (Ocn+) osteoblastic cells. These cells promote cancer by remotely supplying a distinct subset of tumor-infiltrating SiglecFhigh neutrophils, which exhibit cancer-promoting properties. Experimentally reducing Ocn+ cell numbers suppresses the neutrophil response and lung tumor outgrowth. These observations posit osteoblasts as remote regulators of lung cancer and identify SiglecFhigh neutrophils as myeloid cell effectors of the osteoblast-driven protumoral response.


Subject(s)
Adenocarcinoma/pathology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Bone and Bones/pathology , Lectins/metabolism , Lung Neoplasms/pathology , Neutrophil Infiltration , Neutrophils/metabolism , Neutrophils/pathology , Osteoblasts/pathology , Adenocarcinoma of Lung , Animals , Bone Density , Bone Marrow Cells/pathology , Bone and Bones/metabolism , Cell Line, Tumor , Humans , Mice , Mice, Inbred C57BL , Myeloid Cells/pathology , Neoplasms, Experimental/pathology , Osteocalcin/metabolism , Receptor for Advanced Glycation End Products/metabolism
14.
Cell Stem Cell ; 20(5): 590-592, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28475884

ABSTRACT

The niche, as first conceptualized, was in conflict with the prevailing wisdom that stem cells have internal logic. The niche hypothesis has been indisputably confirmed. Yet, recent findings indicate little plasticity of epigenetically scripted hematopoietic stem/progenitors. Reconciling this conflict requires re-envisioning the niche as an enabler, not designer, of cell fate.


Subject(s)
Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Stem Cell Niche/physiology , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Mice , RNA, Messenger/genetics , Stem Cell Niche/genetics
15.
Cell ; 166(4): 894-906, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27518564

ABSTRACT

Regulation of stem and progenitor cell populations is critical in the development, maintenance, and regeneration of tissues. Here, we define a novel mechanism by which a niche-secreted RNase, angiogenin (ANG), distinctively alters the functional characteristics of primitive hematopoietic stem/progenitor cells (HSPCs) compared with lineage-committed myeloid-restricted progenitor (MyePro) cells. Specifically, ANG reduces the proliferative capacity of HSPC while simultaneously increasing proliferation of MyePro cells. Mechanistically, ANG induces cell-type-specific RNA-processing events: tRNA-derived stress-induced small RNA (tiRNA) generation in HSPCs and rRNA induction in MyePro cells, leading to respective reduction and increase in protein synthesis. Recombinant ANG protein improves survival of irradiated animals and enhances hematopoietic regeneration of mouse and human HSPCs in transplantation. Thus, ANG plays a non-cell-autonomous role in regulation of hematopoiesis by simultaneously preserving HSPC stemness and promoting MyePro proliferation. These cell-type-specific functions of ANG suggest considerable therapeutic potential.


Subject(s)
Hematopoietic Stem Cells/metabolism , Ribonuclease, Pancreatic/metabolism , Animals , Cell Proliferation , Hematopoiesis , Hematopoietic Stem Cells/cytology , Humans , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , RNA, Transfer/metabolism , RNA, Untranslated/metabolism
16.
Cell Stem Cell ; 19(4): 530-543, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27524439

ABSTRACT

Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on the differential single-cell gene expression analysis of mesenchymal osteolineage cells close to, and further removed from, hematopoietic stem/progenitor cells (HSPCs) to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location. We functionally examined, among the genes that were preferentially expressed in proximal cells, three secreted or cell-surface molecules not previously connected to HSPC biology-the secreted RNase angiogenin, the cytokine IL18, and the adhesion molecule Embigin-and discovered that all of these factors are HSPC quiescence regulators. Therefore, our proximity-based differential single-cell approach reveals molecular heterogeneity within niche cells and can be used to identify novel extrinsic stem/progenitor cell regulators. Similar approaches could also be applied to other stem cell/niche pairs to advance the understanding of microenvironmental regulation of stem cell function.


Subject(s)
Hematopoietic Stem Cells/cytology , Single-Cell Analysis/methods , Stem Cell Niche , Animals , Bone Marrow Cells/cytology , Bone and Bones/cytology , Cell Lineage/genetics , Cell Self Renewal/genetics , Cell Separation , Gene Deletion , Gene Expression Profiling , Hematopoietic Stem Cells/metabolism , Interleukin-18/metabolism , Membrane Glycoproteins/metabolism , Ribonuclease, Pancreatic/metabolism , Time Factors , Transcription, Genetic , Vascular Cell Adhesion Molecule-1/metabolism
17.
Circ Res ; 116(3): 407-17, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25362208

ABSTRACT

RATIONALE: The mechanisms leading to an expanded neutrophil and monocyte supply after stroke are incompletely understood. OBJECTIVE: To test the hypothesis that transient middle cerebral artery occlusion (tMCAO) in mice leads to activation of hematopoietic bone marrow stem cells. METHODS AND RESULTS: Serial in vivo bioluminescence reporter gene imaging in mice with tMCAO revealed that bone marrow cell cycling peaked 4 days after stroke (P<0.05 versus pre tMCAO). Flow cytometry and cell cycle analysis showed activation of the entire hematopoietic tree, including myeloid progenitors. The cycling fraction of the most upstream hematopoietic stem cells increased from 3.34%±0.19% to 7.32%±0.52% after tMCAO (P<0.05). In vivo microscopy corroborated proliferation of adoptively transferred hematopoietic progenitors in the bone marrow of mice with stroke. The hematopoietic system's myeloid bias was reflected by increased expression of myeloid transcription factors, including PU.1 (P<0.05), and by a decline in lymphocyte precursors. In mice after tMCAO, tyrosine hydroxylase levels in sympathetic fibers and bone marrow noradrenaline levels rose (P<0.05, respectively), associated with a decrease of hematopoietic niche factors that promote stem cell quiescence. In mice with genetic deficiency of the ß3 adrenergic receptor, hematopoietic stem cells did not enter the cell cycle in increased numbers after tMCAO (naive control, 3.23±0.22; tMCAO, 3.74±0.33, P=0.51). CONCLUSIONS: Ischemic stroke activates hematopoietic stem cells via increased sympathetic tone, leading to a myeloid bias of hematopoiesis and higher bone marrow output of inflammatory Ly6C(high) monocytes and neutrophils.


Subject(s)
Infarction, Middle Cerebral Artery/pathology , Mesenchymal Stem Cells/physiology , Myelopoiesis , Adrenergic Fibers/metabolism , Adrenergic Fibers/physiology , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Cycle , Infarction, Middle Cerebral Artery/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred C57BL , Norepinephrine/metabolism , Receptors, Adrenergic, beta-3/genetics , Receptors, Adrenergic, beta-3/metabolism , Stem Cell Niche , Transcription Factors/metabolism , Tyrosine 3-Monooxygenase/metabolism
18.
Gene ; 521(1): 55-61, 2013 May 25.
Article in English | MEDLINE | ID: mdl-23541807

ABSTRACT

Osteosarcoma is the most common primary bone tumor in children and adults. Despite improved prognosis, resistance to chemotherapy remains responsible for failure of osteosarcoma treatment. The identification of the molecular signals that contribute to the aberrant osteosarcoma cell growth may provide clues to develop new therapeutic strategies for chemoresistant osteosarcoma. Here we show that the expression of ErbB3 is increased in human osteosarcoma cells in vitro. Tissue microarray analysis of tissue cores from osteosarcoma patients further showed that the ErbB3 protein expression is higher in bone tumors compared to normal bone tissue, and is further increased in patients with recurrent disease or soft tissue metastasis. In murine osteosarcoma cells, silencing ErbB3 using shRNA decreased cell replication, cell migration and invasion, indicating that ErbB3 contributes to tumor cell growth and invasiveness. Furthermore, ErbB3 silencing markedly reduced tumor growth in a murine allograft model in vivo. Immunohistochemal analysis showed that the reduced tumor growth induced by ErbB3 silencing in this model resulted from decreased cell osteosarcoma cell proliferation, supporting a role of ErbB3 in bone tumor growth in vivo. Taken together, the results reveal that ErbB3 expression in human osteosarcoma correlates with tumor grade. Furthermore, silencing ErbB3 in a murine osteosarcoma model results in decreased cell growth and invasiveness in vitro, and reduced tumor growth in vivo, which supports the potential therapeutic interest of targeting ErbB3 in osteosarcoma.


Subject(s)
Bone Neoplasms/genetics , Bone Neoplasms/pathology , Osteosarcoma/pathology , Receptor, ErbB-3/genetics , Animals , Base Sequence , Bone Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Osteosarcoma/genetics , Osteosarcoma/metabolism , RNA, Small Interfering , Receptor, ErbB-3/metabolism , Xenograft Model Antitumor Assays
19.
Stem Cells ; 31(7): 1340-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23533197

ABSTRACT

The identification of the molecular mechanisms controlling the degradation of regulatory proteins in mesenchymal stromal cells (MSC) may provide clues to promote MSC osteogenic differentiation and bone regeneration. Ubiquitin ligase-dependent degradation of proteins is an important process governing cell fate. In this study, we investigated the role of the E3 ubiquitin ligase c-Cbl in MSC osteoblast differentiation and identified the mechanisms involved in this effect. Using distinct shRNA targeting c-Cbl, we showed that c-Cbl silencing promotes osteoblast differentiation in murine and human MSC, as demonstrated by increased alkaline phosphatase activity, expression of phenotypic osteoblast marker genes (RUNX2, ALP, type 1 collagen), and matrix mineralization in vitro. Coimmunoprecipitation analyses showed that c-Cbl interacts with the transcription factor STAT5, and that STAT5 forms a complex with RUNX2, a master transcription factor controlling osteoblastogenesis. Silencing c-Cbl decreased c-Cbl-mediated STAT5 ubiquitination, increased STAT5 protein level and phosphorylation, and enhanced STAT5 and RUNX2 transcriptional activity. The expression of insulin like growth factor-1 (IGF-1), a target gene of STAT5, was increased by c-Cbl silencing in MSC and in bone marrow stromal cells isolated from c-Cbl deficient mice, suggesting that IGF-1 contributes to osteoblast differentiation induced by c-Cbl silencing in MSC. Consistent with these findings, pharmacological inhibition of STAT5 activity, or neutralization of IGF-1 activity, abrogated the positive effect of c-Cbl knockdown on MSC osteogenic differentiation. Taken together, the data provide a novel functional mechanism by which the ubiquitin ligase c-Cbl regulates the osteoblastic differentiation program in mesenchymal cells by controlling Cbl-mediated STAT5 degradation and activity.


Subject(s)
Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , STAT5 Transcription Factor/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Differentiation/physiology , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Mice , Mice, Inbred C3H , Mice, Knockout , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , STAT5 Transcription Factor/genetics , Signal Transduction , Ubiquitin-Protein Ligases/genetics
20.
Med Sci (Paris) ; 28(11): 970-5, 2012 Nov.
Article in French | MEDLINE | ID: mdl-23171901

ABSTRACT

Cbl ubiquitin ligases are important molecules that control the process of ubiquitination and degradation of proteins by the proteasome. Because this process regulates several intracellular mechanisms, alterations in Cbl activity lead to several pathologies including cancer. In bone, the c-Cbl ubiquitin ligase is known to control osteoclast activity. Our studies indicate that c-Cbl also regulates osteoblast proliferation, differentiation and survival. We recently showed that inhibition of c-Cbl activity using a c-Cbl mutant leads to promote osteoblast differentiation in mesenchymal stromal cells as a consequence of increased receptor tyrosine kinase expression. Conversely, we found that overexpression of c-Cbl leads to inhibit osteosarcoma cell proliferation and tumorigenesis through downregulation of these receptors. Thus, the use of pharmacological agents capable of modulating c-Cbl activity may be of therapeutic interest for promoting bone formation in normal bone, or to reduce tumorigenesis in primary bone cancer.


Subject(s)
Bone Neoplasms/enzymology , Bone Resorption/enzymology , Cell Transformation, Neoplastic , Neoplasm Proteins/physiology , Osteoblasts/enzymology , Osteoclasts/enzymology , Osteogenesis/physiology , Osteosarcoma/enzymology , Proto-Oncogene Proteins c-cbl/physiology , Animals , Bone Neoplasms/drug therapy , Cell Differentiation , Cell Division , Humans , Mice , Mice, Knockout , Models, Biological , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Osteosarcoma/drug therapy , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-cbl/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/physiology , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...