Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 123(12): 2079-2092, 2022 12.
Article in English | MEDLINE | ID: mdl-36191155

ABSTRACT

Prostate cancer (PCa) represents the second most common cancer in men and affects millions worldwide. Chemotherapy is a common treatment for PCa but the development of resistance is often a problem during therapy. NRF2 (nuclear factor erythroid 2-related factor 2) is one of the major transcription factors regulating antioxidant enzymes and is also involved with drug efflux and detoxification. Cancer cells submitted to chemotherapy often promote NRF2 activation to benefit themselves with the cytoprotective response. Here, we found that DU145 and PC3 PCa cell lines have different responses regarding NRF2 activation, when subjected to arsenite-induced stress, even in the presence of MG132, a proteasome inhibitor. We also observed that only in PC3 cells treated with arsenite, NRF2 was able to translocate to the nucleus. To better understand the role of NRF2 in promoting chemoresistance, we performed CRISPR knockout of NRF2 (NKO) in DU145 and PC3 cells. The effectiveness of the knockout was confirmed through the downregulation of NRF2 targets (p < 0.0001). PC3 NKO cells exhibited higher levels of reactive oxygen species (ROS) compared to wild-type cells (p < 0.0001), while this alteration was not observed in DU145 NKO cells. Despite no modulation in ROS content, a lower IC50 value (p < 0.05) for cisplatin was observed in DU145 NKO cells, suggesting that the knockout sensitized the cells to the treatment. Besides, the treatment of DU145 NKO with cisplatin led cells to apoptosis as observed by the increased levels of PARP1 cleavage (p < 0.05), possibly triggered by increased DNA damage. Reduced levels of KU70 and phospho-CHK2 (p < 0.05) were also detected. The data presented here support that NRF2 is a mediator of oncogenesis and could be a potential target to sensitize PCa cells to chemotherapy, reinforcing the importance of knowing the specific genetic and biochemical characteristics of the cancer cells for a more effective approach against cancer.


Subject(s)
Arsenites , Prostatic Neoplasms , Male , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Arsenites/pharmacology , Arsenites/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Apoptosis , Cell Line, Tumor
2.
Front Immunol ; 12: 702025, 2021.
Article in English | MEDLINE | ID: mdl-34234788

ABSTRACT

Physical exercise is considered a fundamental strategy in improving insulin sensitivity and glucose uptake in skeletal muscle. However, the molecular mechanisms underlying this regulation, primarily on skeletal muscle glucose uptake, are not fully understood. Recent evidence has shown that Rho-kinase (ROCK) isoforms play a pivotal role in regulating skeletal muscle glucose uptake and systemic glucose homeostasis. The current study evaluated the effect of physical exercise on ROCK2 signaling in skeletal muscle of insulin-resistant obese animals. Physiological (ITT) and molecular analysis (immunoblotting, and RT-qPCR) were performed. The contents of RhoA and ROCK2 protein were decreased in skeletal muscle of obese mice compared to control mice but were restored to normal levels in response to physical exercise. The exercised animals also showed higher phosphorylation of insulin receptor substrate 1 (IRS1 Serine 632/635) and protein kinase B (Akt) in the skeletal muscle. However, phosphatase and tensin homolog (PTEN) and protein-tyrosine phosphatase-1B (PTP-1B), both inhibitory regulators for insulin action, were increased in obesity but decreased after exercise. The impact of ROCK2 action on muscle insulin signaling is further underscored by the fact that impaired IRS1 and Akt phosphorylation caused by palmitate in C2C12 myotubes was entirely restored by ROCK2 overexpression. These results suggest that the exercise-induced upregulation of RhoA-ROCK2 signaling in skeletal muscle is associated with increased systemic insulin sensitivity in obese mice and further implicate that muscle ROCK2 could be a potential target for treating obesity-linked metabolic disorders.


Subject(s)
Insulin Resistance/physiology , Insulin/metabolism , Mice, Obese/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , rho-Associated Kinases/metabolism , Animals , Glucose/metabolism , Mice , Mice, Obese/physiology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiopathology , Obesity/metabolism , Obesity/physiopathology , Signal Transduction/physiology
3.
Int J Mol Sci ; 21(21)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126429

ABSTRACT

The high capacity of the skeletal muscle to regenerate is due to the presence of muscle stem cells (MuSCs, or satellite cells). The E3 ubiquitin ligase Parkin is a key regulator of mitophagy and is recruited to mitochondria during differentiation of mouse myoblast cell line. However, the function of mitophagy during regeneration has not been investigated in vivo. Here, we have utilized Parkin deficient (Parkin-/-) mice to investigate the role of Parkin in skeletal muscle regeneration. We found a persistent deficiency in skeletal muscle regeneration in Parkin-/- mice after cardiotoxin (CTX) injury with increased area of fibrosis and decreased cross-sectional area (CSA) of myofibres post-injury. There was also a significant modulation of MuSCs differentiation and mitophagic markers, with altered mitochondrial proteins during skeletal muscle regeneration in Parkin-/- mice. Our data suggest that Parkin-mediated mitophagy plays a key role in skeletal muscle regeneration and is necessary for MuSCs differentiation.


Subject(s)
Cell Differentiation , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Muscle Development , Muscle, Skeletal/pathology , Regeneration , Ubiquitin-Protein Ligases/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitophagy , Muscle, Skeletal/metabolism , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...