Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 201: 116155, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401387

ABSTRACT

Sharks are particularly susceptible to bioaccumulation due to their life history characteristics and trophic position within marine ecosystems. Despite this, studies of bioaccumulation cover only a small proportion of extant species. In this study we report concentrations of trace elements and heavy metals in blood samples of Sphyrna lewini for the first time. We report high concentrations of several trace elements and heavy metals, with concentrations of some elements exceeding the limit determined safe for human consumption. High elemental concentrations may reflect biochemical differences between blood plasma and other tissues; however, they may also be symptomatic of high levels of exposure triggered by anthropogenic activities. We also provide evidence of elemental accumulation through ontogeny, the nature of which differs from that previously reported. Ultimately, this baseline study increases our understanding of interspecific and intraspecific variation in bioaccumulation and ecotoxicology in elasmobranchs which may prove important in ensuring adequate management.


Subject(s)
Metals, Heavy , Sharks , Trace Elements , Animals , Bays , Ecosystem , Mexico
2.
Sci Total Environ ; 918: 170651, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38320710

ABSTRACT

Microplastic pollution is an increasing threat to coral reefs, which are already strongly challenged by climate change-related heat stress. Although it is known that scleractinian corals can ingest microplastic, little is known about their egestion and how microplastic exposure may impair corals at physiological and cellular levels. In addition, the effects of microplastic pollution at current environmental concentration have been little investigated to date, particularly in corals already impacted by heat stress. In this study, the combined effects of these environmental threats on Pocillopora damicornis were investigated from a physical and cellular perspective. Colonies were exposed to three concentrations of polyethylene microplastic beads (no microplastic beads: [No MP], 1 mg/L: [Low MP]; 10 mg/L: [High MP]), and two different temperatures (25 °C and 30 °C) for 72 h. No visual signs of stress in corals, such as abnormal mucus production and polyp extroflection, were recorded. At [Low MP], beads adhered to colonies were ingested but were also egested. Moreover, thermally stressed colonies showed a lower adhesion and higher egestion of microplastic beads. Coral bleaching was observed with an increase in temperature and microplastic bead concentration, as indicated by a general decrease in chlorophyll concentration and Symbiodiniaceae density. An increase in lipid peroxidation was measured in colonies exposed to [Low MP] and [High MP] and an up-regulation of stress response gene hsp70 was observed due to the synergistic interaction of both stressors. Overall, our findings showed that heat stress still represents the main threat to P. damicornis, while the effect of microplastics on coral health and physiology may be minor, especially at control temperature. However, microplastics could exacerbate the effect of thermal stress on cellular homeostasis, even at [Low MP]. While reducing ocean warming is critical for preserving coral reefs, effective management of emerging threats like microplastic pollution is equally essential.


Subject(s)
Anthozoa , Microplastics , Animals , Microplastics/toxicity , Plastics/toxicity , Anthozoa/physiology , Coral Reefs , Heat-Shock Response
3.
Mar Pollut Bull ; 200: 116125, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359481

ABSTRACT

Phthalates are widely employed plasticizers blended to plastic polymers that, during plastic aging and weathering are prone to leach in the surrounding environment. Thus, phthalates were proposed to indirectly evaluate MPs contamination in marine environments, with still uncertain and scarce data, particularly for wildlife. This study investigates simultaneously microplastics (MPs) and phthalates (PAEs) occurrence in wild Actinia equina and Anemonia viridis, two common and edible sea anemone species. Both species had a 100 % frequency of MPs occurrence, with similar average concentrations. PAEs were detected in 70 % of samples, with concentrations up to 150 ng/g in A. equina and 144.3 ng/g for A. viridis. MPs and PAEs present in sea anemone tissues appear to reflect seawater plastic contamination conditions in the study area. Given the rapid biodegradation of PAEs, occurrence and concentrations of both these additives and their metabolites could be useful tracers of short-term plastic debris-biota interactions.


Subject(s)
Phthalic Acids , Sea Anemones , Animals , Microplastics , Plastics
4.
Cladistics ; 40(2): 107-134, 2024 04.
Article in English | MEDLINE | ID: mdl-38112464

ABSTRACT

Capitate hydrozoans are a morphologically and ecologically diverse hydrozoan suborder, currently including about 200 species. Being grouped in two clades, Corynida and Zancleida, these hydrozoans still show a number of taxonomic uncertainties at the species, genus and family levels. Many Capitata species established symbiotic relationships with other benthic organisms, including bryozoans, other cnidarians, molluscs and poriferans, as well as with planktonic dinoflagellates for mixotrophic relationships and with bacteria for thiotrophic ectosymbioses. Our study aimed at providing an updated and comprehensive phylogeny reconstruction of the suborder, at modelling the evolution of selected morphological and ecological characters, and at testing evolutionary relationships between the symbiotic lifestyle and the other characters, by integrating taxonomic, ecological and evolutionary data. The phylogenetic hypotheses here presented shed light on the evolutionary relationships within Capitata, with most families and genera being recovered as monophyletic. The genus Zanclea and family Zancleidae, however, were divided into four divergent clades, requiring the establishment of the new genus Apatizanclea and the new combinations for species in Zanclea and Halocoryne genera. The ancestral state reconstructions revealed that symbiosis arose multiple times in the evolutionary history of the Capitata, and that homoplasy is a common phenomenon in the group. Correlations were found between the evolution of symbiosis and morphological characters, such as the perisarc. Overall, our results highlighted that the use of genetic data and a complete knowledge of the life cycles are strongly needed to disentangle taxonomic and systematic issues in capitate hydrozoans. Finally, the colonization of tropical habitat appears to have influenced the evolution of a symbiotic lifestyle, playing important roles in the evolution of the group.


Subject(s)
Hydrozoa , Humans , Animals , Phylogeny , Hydrozoa/genetics , Hydrozoa/anatomy & histology , Symbiosis/genetics , Ecosystem
5.
J Fish Biol ; 103(5): 1242-1247, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37535422

ABSTRACT

Verified records of the bull shark Carcharhinus leucas are lacking in the Maldives. This study provides the first confirmed evidence of 23 sightings observed from 2013 to 2023 in the central and southern atolls of this archipelago. Most of the sightings occurred in close proximity to inhabited areas, where food waste is often discarded into the water, or in several dive sites, suggesting the presence of this species in different locations around central and southern atolls. Although further research is required to fully investigate the C. leucas population in the Maldives, this report documents and confirms its presence in this region.


Subject(s)
Refuse Disposal , Sharks , Animals , Indian Ocean , Food
6.
ACS Appl Mater Interfaces ; 15(28): 33916-33931, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37376819

ABSTRACT

Massive coral bleaching episodes induced by thermal stress are one of the first causes of coral death worldwide. Overproduction of reactive oxygen species (ROS) has been identified as one of the potential causes of symbiosis breakdown between polyps and algae in corals during extreme heat wave events. Here, we propose a new strategy for mitigating heat effects by delivering underwater an antioxidant to the corals. We fabricated zein/polyvinylpyrrolidone (PVP)-based biocomposite films laden with the strong and natural antioxidant curcumin as an advanced coral bleaching remediation tool. Biocomposites' mechanical, water contact angle (WCA), swelling, and release properties can be tuned thanks to different supramolecular rearrangements that occur by varying the zein/PVP weight ratio. Following immersion in seawater, the biocomposites became soft hydrogels that did not affect the coral's health in the short (24 h) and long periods (15 days). Laboratory bleaching experiments at 29 and 33 °C showed that coral colonies of Stylophora pistillata coated with the biocomposites had ameliorated conditions in terms of morphological aspects, chlorophyll content, and enzymatic activity compared to untreated colonies and did not bleach. Finally, biochemical oxygen demand (BOD) confirmed the full biodegradability of the biocomposites, showing a low potential environmental impact in the case of open-field application. These insights may pave the way for new frontiers in mitigating extreme coral bleaching events by combining natural antioxidants and biocomposites.


Subject(s)
Anthozoa , Curcumin , Zein , Animals , Anthozoa/metabolism , Curcumin/pharmacology , Antioxidants/pharmacology , Chlorophyll/metabolism , Coral Reefs
7.
Mar Pollut Bull ; 192: 115084, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37257411

ABSTRACT

Tourism is the main income source for the Maldives, but concurrently, it represents a growing threat to its marine ecosystem. Here, we monitored the bioaccumulation of 15 emerging contaminants (ECs) in the Maldivian reef sponges Spheciospongia vagabunda collected in two resort islands (Athuruga and Thudufushi, Ari Atoll) and an inhabited island (Magoodhoo, Faafu Atoll), and we analysed their impact on different sponge cellular stress biomarkers. Caffeine and the insect repellent DEET were detected in sponges of all the islands, whereas the antibiotic erythromycin and the UV filter 4-methylbenzylidene camphor were found in resort islands only. Although concentrations were approximately a few ng/g d.w., we quantified various induced cellular effects, in particular an increase of the levels of the enzyme glutathione S-transferase involved in cell detoxification. Our results highlight the importance to increase awareness on ECs pollution, promoting the use of more environmental friendly products to achieving the sustainable development goals.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem , Bioaccumulation , Tourism
8.
Restor Ecol ; : e13646, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35603134

ABSTRACT

Coral restoration initiatives are gaining significant momentum in a global effort to enhance the recovery of degraded coral reefs. However, the implementation and upkeep of coral nurseries are particularly demanding, so that unforeseen breaks in maintenance operations might jeopardize well-established projects. In the last 2 years, the COVID-19 pandemic has resulted in a temporary yet prolonged abandonment of several coral gardening infrastructures worldwide, including remote localities. Here we provide a first assessment of the potential impacts of monitoring and maintenance breakdown in a suite of coral restoration projects (based on floating rope nurseries) in Colombia, Seychelles, and Maldives. Our study comprises nine nurseries from six locations, hosting a total of 3,554 fragments belonging to three coral genera, that were left unsupervised for a period spanning from 29 to 61 weeks. Floating nursery structures experienced various levels of damage, and total fragment survival spanned from 40 to 95% among projects, with Pocillopora showing the highest survival rate in all locations present. Overall, our study shows that, under certain conditions, abandoned coral nurseries can remain functional for several months without suffering critical failure from biofouling and hydrodynamism. Still, even where gardening infrastructures were only marginally affected, the unavoidable interruptions in data collection have slowed down ongoing project progress, diminishing previous investments and reducing future funding opportunities. These results highlight the need to increase the resilience and self-sufficiency of coral restoration projects, so that the next global lockdown will not further shrink the increasing efforts to prevent coral reefs from disappearing.

9.
Mar Drugs ; 20(2)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35200663

ABSTRACT

The octocoral family Alcyoniidae represents a rich source of bioactive substances with intriguing and unique structural features. This review aims to provide an updated overview of the compounds isolated from Alcyoniidae and displaying potential cytotoxic activity. In order to allow a better comparison among the bioactive compounds, we focused on molecules evaluated in vitro by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, by far the most widely used method to analyze cell proliferation and viability. Specifically, we surveyed the last thirty years of research, finding 153 papers reporting on 344 compounds with proven cytotoxicity. The data were organized in tables to provide a ranking of the most active compounds, to be exploited for the selection of the most promising candidates for further screening and pre-clinical evaluation as anti-cancer agents. Specifically, we found that (22S,24S)-24-methyl-22,25-epoxyfurost-5-ene-3ß,20ß-diol (16), 3ß,11-dihydroxy-24-methylene-9,11-secocholestan-5-en-9-one (23), (24S)-ergostane-3ß,5α,6ß,25 tetraol (146), sinulerectadione (227), sinulerectol C (229), and cladieunicellin I (277) exhibited stronger cytotoxicity than their respective positive control and that their mechanism of action has not yet been further investigated.


Subject(s)
Anthozoa/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Animals , Antineoplastic Agents/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Neoplasms/pathology
10.
Sci Total Environ ; 819: 152965, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35016940

ABSTRACT

Plastic pollution threatens the marine environment, especially due to the adverse effects caused by micro and nano particles interacting with the marine biota. In order to provide reliable data regarding micro and nanoplastic contamination and the related impacts, efficient analytical solutions are needed. We developed a new analysis workflow that uses marine sponges to monitor plastic pollution by characterizing the plastic particles accumulated in their tissue. Specimens of cf. Haliclona (Haplosclerida) were sampled in the Maldivian archipelago. The aim was to optimize the method and to carry out a pilot study of the contamination of the related reef habitat. Particles were isolated, size fractioned, counted and submitted to morphological and chemical characterization. The constituting polymer was identified by infrared microspectroscopy for particles >25 µm, and by pyrolysis coupled with gas chromatography mass spectrometry for those <25 µm. Method recoveries were between 87 and 83% and limits of quantitation (LOQs) were between 6.6 and 30.2 ng/g. Analyses showed that 70% of the sponges presented plastic contamination, with an average of 1.2 particles/g tissue for the 25-150 µm size range, and a total plastic concentration of up to 4.8 µg/g in the 0.2-25 µm size range, with polyolefin being the most represented polymer in both size ranges. Overall, the study demonstrated the reliability of the proposed analytical workflow and of the use of sponges as biosamplers for plastic particles.


Subject(s)
Porifera , Water Pollutants, Chemical , Animals , Gas Chromatography-Mass Spectrometry , Pilot Projects , Plastics/analysis , Pyrolysis , Reproducibility of Results , Spectrum Analysis , Water Pollutants, Chemical/analysis
11.
Cladistics ; 38(1): 13-37, 2022 02.
Article in English | MEDLINE | ID: mdl-35049086

ABSTRACT

The hydrozoan family Cladocorynidae inhabits tropical to temperate waters and comprises the two genera Pteroclava and Cladocoryne. Pteroclava lives in association with some octocorals and hydrozoans, whereas Cladocoryne is more generalist in terms of substrate choice. This work provides a thorough morpho-molecular reassessment of the Cladocorynidae by presenting the first well-supported phylogeny of the family based on the analyses of three mitochondrial and four nuclear markers. Notably, the two nominal genera were confirmed to be monophyletic and both morphological and genetic data led to the formal description of a new genus exclusively associated with octocorals, Pseudozanclea gen. nov. Maggioni & Montano. Accordingly, the diagnosis of the family was updated. The ancestral state reconstruction of selected characters revealed that the symbiosis with octocorals likely appeared in the most recent common ancestor of Pteroclava and Pseudozanclea. Additionally, the presence of euryteles aggregation in the polyp stage and the exumbrellar nematocyst pouches with euryteles represent synapomorphies of all cladocorynid taxa and probably emerged in their most recent common ancestor. The analysis of several Pteroclava krempfi colonies from Indo-Pacific and Caribbean localities associated with several host octocorals revealed a high intra-specific genetic variability. Single- and multi-locus species delimitations resulted in three to five species hypotheses, but the statistical analysis of morphometric data showed only limited distinction among the clades of P. krempfi. However, P. krempfi clades showed differences in both host specificity, mostly at the octocoral family level, and geographic distribution, with one clade found exclusively in the Caribbean Sea and the others found in the Indo-Pacific.


Subject(s)
Hydrozoa , Animals , Caribbean Region , Host Specificity/genetics , Phylogeny , Symbiosis
12.
DNA Res ; 28(4)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34387305

ABSTRACT

The crown-of-thorns starfish (COTS) is a coral predator that is widely distributed in Indo-Pacific Oceans. A previous phylogenetic study using partial mitochondrial sequences suggested that COTS had diverged into four distinct species, but a nuclear genome-based analysis to confirm this was not conducted. To address this, COTS species nuclear genome sequences were analysed here, sequencing Northern Indian Ocean (NIO) and Red Sea (RS) species genomes for the first time, followed by a comparative analysis with the Pacific Ocean (PO) species. Phylogenetic analysis and ADMIXTURE analysis revealed clear divergences between the three COTS species. Furthermore, within the PO species, the phylogenetic position of the Hawaiian sample was further away from the other Pacific-derived samples than expected based on the mitochondrial data, suggesting that it may be a PO subspecies. The pairwise sequentially Markovian coalescent model showed that the trajectories of the population size diverged by region during the Mid-Pleistocene transition when the sea-level was dramatically decreased, strongly suggesting that the three COTS species experienced allopatric speciation. Analysis of the orthologues indicated that there were remarkable genes with species-specific positive selection in the genomes of the PO and RS species, which suggested that there may be local adaptations in the COTS species.


Subject(s)
Biological Evolution , Genome , Phylogeny , Starfish/genetics , Animals , Genomics , Phylogeography , Sequence Analysis, DNA
13.
Proc Biol Sci ; 288(1953): 20210274, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34187190

ABSTRACT

Reef fishes are a treasured part of marine biodiversity, and also provide needed protein for many millions of people. Although most reef fishes might survive projected increases in ocean temperatures, corals are less tolerant. A few fish species strictly depend on corals for food and shelter, suggesting that coral extinctions could lead to some secondary fish extinctions. However, secondary extinctions could extend far beyond those few coral-dependent species. Furthermore, it is yet unknown how such fish declines might vary around the world. Current coral mass mortalities led us to ask how fish communities would respond to coral loss within and across oceans. We mapped 6964 coral-reef-fish species and 119 coral genera, and then regressed reef-fish species richness against coral generic richness at the 1° scale (after controlling for biogeographic factors that drive species diversification). Consistent with small-scale studies, statistical extrapolations suggested that local fish richness across the globe would be around half its current value in a hypothetical world without coral, leading to more areas with low or intermediate fish species richness and fewer fish diversity hotspots.


Subject(s)
Anthozoa , Tetraodontiformes , Animals , Biodiversity , Coral Reefs , Fishes , Humans , Oceans and Seas
14.
Mol Ecol ; 29(22): 4382-4394, 2020 11.
Article in English | MEDLINE | ID: mdl-32967057

ABSTRACT

Corals show spatial acclimatisation to local environment conditions. However, the various cellular mechanisms involved in local acclimatisation and variable bleaching patterns in corals remain to be thoroughly understood. In this study, the modulation of a protein implicated in cellular heat stress tolerance, the heat shock protein 70, was compared at both gene (hsp70) and protein (Hsp70) expression level in bleaching tolerant near-coast Acropora muricata colonies and bleaching susceptible reef colonies, in the lagoon of Belle Mare (Mauritius). The relative Hsp70 levels varied significantly between colonies from the two different locations, colonies having different health conditions and the year of collection. Before the bleaching event of 2016, near-coast colonies had higher basal levels of both Hsp70 gene and protein compared to reef colonies. During the bleaching event, the near-coast colonies did not bleach and had significantly higher relative levels of both Hsp70 gene and protein compared to bleached reef colonies. No significant genetic differentiation between the two studied coral populations was observed and all the colonies analysed were associated with Symbiodiniaceae of the genus Symbiodinium (Clade A) irrespective of location and sampling period. These findings provide further evidence of the involvement of Hsp70 in conferring bleaching tolerance to corals. Moreover, the consistent expression differences of Hsp70 gene and protein between the near-coast and reef coral populations in a natural setting indicate that the modulation of this Hsp is involved in local acclimatisation of corals to their environments.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Anthozoa/genetics , Coral Reefs , Female , HSP70 Heat-Shock Proteins/genetics , Horses , Mauritius , Symbiosis
15.
Mol Phylogenet Evol ; 151: 106893, 2020 10.
Article in English | MEDLINE | ID: mdl-32562820

ABSTRACT

Zanclea divergens is a tropical hydrozoan living in symbiotic association with bryozoans and currently reported from Papua New Guinea, Indonesia, and Maldives. Here, we used an integrative approach to assess the morpho-molecular diversity of the species across the Indo-Pacific. Phylogenetic and species delimitation analyses based on seven mitochondrial and nuclear loci revealed four well-supported molecular lineages corresponding to cryptic species, and representing a Pacific clade, an Indian clade, and two Red Sea clades. Since the general polyp morphology was almost identical in all samples, the nematocyst capsules were measured and analysed to search for possible fine-scale differences, and their statistical treatment revealed a significant difference in terms of length and width among the clades investigated. All Zanclea divergens specimens were specifically associated with cheilostome bryozoans belonging to the genus Celleporaria. The Pacific and Indian clades were associated with Celleporaria sp. and C. vermiformis, respectively, whereas both Red Sea lineages were associated with C. pigmentaria. Nevertheless, the sequencing of host bryozoans revealed that one of the Red Sea hydrozoan clades is associated with two morphologically undistinguishable, but genetically divergent, bryozoan species. Overall, our results show that Z. divergens is a species complex composed of morphologically cryptic lineages showing partially disjunct distributions and host specificity. The presence of two sympatric lineages living on the same host species reveal complex dynamics of diversification, and future research aimed at understanding their diversification process will likely improve our knowledge on the mechanisms of speciation among currently sympatric cryptic species.


Subject(s)
Host Specificity , Hydrozoa/classification , Animals , Hydrozoa/anatomy & histology , Indian Ocean , Phylogeny , Species Specificity , Statistics as Topic , Symbiosis
16.
Mar Pollut Bull ; 156: 111273, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32510412

ABSTRACT

In the Maldivian islands, the lack of sewage wastewater treatment and an improper landfill enhance the potential hazard of emerging contaminants, including pharmaceuticals and personal care products. In order to analyze the occurrence of emerging contaminants in the marine biota, sponges were collected in two coral reef areas of Magoodhoo island (Faafu), one near the landfill and the other furthest from the island. Caffeine, fluoxetine and norfluoxetine were detected only in the proximity of the landfill, with caffeine showing the highest concentration (28.4 ng/g d.w.), followed by fluoxetine (6.00 ng/g d.w.). Norfluoxetine was below the limit of quantification of 10 ng/g d.w. Nitro xylene, N,N-Diethyl-meta-toluamide and galaxolide were found in both areas, with concentrations of 3.51/6.11/8.54 and

Subject(s)
Cosmetics , Water Pollutants, Chemical/analysis , Coral Reefs , Environmental Monitoring , Indian Ocean Islands , Islands
17.
Mar Pollut Bull ; 155: 111117, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32469762

ABSTRACT

Microplastic pollution represents a serious hazard for the marine environment, including coral reefs. Scleractinian corals can easily mistake microplastics with their natural preys, and ingest them and all the annexed plasticizer additives. Here we selectively searched on field for five phthalates esters (PAEs) namely dibutyl-phthalate (DBP), benzylbutyl-phthalate (BBzP), diethyl-phthalate (DEP), Bis(2-ethylhexyl)-phthalate (DEHP), and dimethyl-phthalate (DMP) in the coral species Pocillopora verrucosa, Porites lutea and Pavona varians. Our data reveal that >95% of corals sampled were contaminated, with a maximum of 172.4 ng/g, a value 7 time-fold higher than those found in a previous study. The Σ5 PAEs showed an average of about 30 ng/g per coral, but no differences in PAEs contamination was detected between species, depth or reef exposure. Despite their effects on coral physiology are not yet known, PAEs should be now considered as a novel, and ubiquitous, form of contamination in corals.


Subject(s)
Anthozoa , Phthalic Acids , Animals , Coral Reefs , Dibutyl Phthalate , Esters , Plastics
19.
Mar Pollut Bull ; 136: 464-471, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30509830

ABSTRACT

Microplastics are recognized as a growing threat for the marine environment that may even affect areas generally considered pristine. In this work we surveyed the microplastic contamination in the Faafu Atoll (Maldives, Indian Ocean) across twelve sampling station, located either inside or outside the reef rim. Sediments and seawater samples were collected. Despite the remoteness of the atoll, the scarce local population and low touristic annual afflux, the detected average abundance were 0.32 ±â€¯0.15 particles/m3 in the surface water and 22.8 ±â€¯10.5 particles/m2 in the beach sediments. Polymers identified through Fourier-Transform Infrared spectroscopy were mostly polyethylene, polypropylene, polystyrene, polyvinylchloride, polyethyleneterephtalate, and polyamide. Elastomeric residues and charred microparticles were also found. In particular, the charred microparticles were prevalently located nearby the inhabited island and they might be considered a peculiarity of the area, related to local practice of burning plastic waste at the shoreline.


Subject(s)
Plastics/analysis , Seawater/analysis , Water Pollutants, Chemical/analysis , Coral Reefs , Environmental Monitoring/methods , Geologic Sediments , Indian Ocean , Indian Ocean Islands , Plastics/chemistry , Polyethylene/analysis , Polystyrenes/analysis , Spectroscopy, Fourier Transform Infrared
20.
Environ Monit Assess ; 190(6): 344, 2018 May 12.
Article in English | MEDLINE | ID: mdl-29754219

ABSTRACT

Outbreaks of the corallivorous crown-of-thorns seastars have received increasing attention due to their negative impacts on coral reefs in the Indo-Pacific Ocean. However, outbreaks in remote and dislocated islands are still poorly understood. This study aims to begin filling informational gaps regarding outbreaks of Acanthaster planci in the remote islands of the central Ari Atoll, Republic of Maldives. The population of A. planci was monitored during three periods over 2 years (2015-2016) to evaluate variations in abundance and to characterise size structure and feeding behaviour. The outbreak appeared to be severe and active throughout the entire study period. The size structure analysis revealed a multimodal distribution dominated by individuals between 20 and 30 cm, suggesting that the outbreak may have resulted from a few nearby mass spawning events. Additionally, the most abundant live coral was Porites, which was also the most consumed genus; however, the electivity index showed a preference for corals of the genera Favites and Pavona. Finally, we also highlighted the need for more geographically extended surveys to better understand local patterns regarding outbreaks of A. planci in the Republic of Maldives.


Subject(s)
Anthozoa/physiology , Food Chain , Life History Traits , Starfish/physiology , Animals , Coral Reefs , Feeding Behavior , Indian Ocean Islands , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...