Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Anim Sci ; 96(10): 4125-4135, 2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30272227

ABSTRACT

A major objective of pork producers is to reduce production cost. Feeding may account for over 75% of pork production costs. Thus, selecting pigs for feed efficiency (FE) traits is a priority in pig breeding programs. While in the Americas, pigs are typically fed high-input diets, based on corn and soybean meal (CS); in Western Europe, pigs are commonly fed diets based on wheat and barley with high amounts of added protein-rich coproducts (WB), e.g., from milling and seed-oil industries. These two feeding scenarios provided a realistic setting for investigating a specific type of genotype by environment interaction; thus, we investigated the genotype by feed interaction (GxF). In the presence of a GxF, different feed compositions should be considered when selecting for FE. This study aimed to 1) verify the presence of a GxF for FE and growth performance traits in different growth phases (starter, grower, and finisher) of 3-way crossbred growing-finishing pigs fed either a CS (547 boars and 558 gilts) or WB (567 boars and 558 gilts) diet; and 2) to assess and compare the expected responses to direct selection under the 2 diets and the expected correlated responses for one diet to indirect selection under the other diet. We found that GxF did not interfere in the ranking of genotypes under both diets for growth, protein deposition, feed intake, energy intake, or feed conversion rate. Therefore, for these traits, we recommend changing the diet of growing-finishing pigs from high-input feed (i.e., CS) to feed with less valuable ingredients, as WB, to reduce production costs and the environmental impact, regardless of which diet is used in selection. We found that GxF interfered in the ranking of genotypes and caused heterogeneity of genetic variance under both diets for lipid deposition (LD), residual energy intake (REI), and residual feed intake (RFI). Thus, selecting pigs under a diet different from the diet used for growing-finishing performance could compromise the LD in all growth phases, compromise the REI and RFI during the starter phase, and severely compromise the REI during the grower phase. In particular, when pigs are required to consume a WB diet for growing-finishing performance, pigs should be selected for FE under the same diet. Breeding pigs for FE under lower-input diets should be considered, because FE traits will become more important and lower-input diets will become more widespread in the near future.


Subject(s)
Animal Feed/analysis , Eating , Energy Intake , Swine/genetics , Animals , Diet/veterinary , Europe , Female , Genotype , Hordeum , Male , Phenotype , Swine/growth & development , Swine/physiology , Triticum
2.
J Anim Sci ; 96(3): 817-829, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29378008

ABSTRACT

Selection for feed efficiency (FE) is a strategy to reduce the production costs per unit of animal product, which is one of the major objectives of current animal breeding programs. In pig breeding, selection for FE and other traits traditionally takes place based on purebred pig (PB) performance at the nucleus level, while pork production typically makes use of crossbred animals (CB). The success of this selection, therefore, depends on the genetic correlation between the performance of PB and CB (rpc) and on the genetic correlation (rg) between FE and the other traits that are currently under selection. Different traits are being used to account for FE, but the rpc has been reported only for feed conversion rate. Therefore, this study aimed 1) to estimate the rpc for growth performance, carcass, and FE traits; 2) to estimate rg between traits within PB and CB populations; and 3) to compare three different traits representing FE: feed conversion rate, residual energy intake (REI), and residual feed intake (RFI). Phenotypes of 194,445 PB animals from 23 nucleus farms, and 46,328 CB animals from three farms where research is conducted under near commercial production conditions were available for this study. From these, 22,984 PB and 8,657 CB presented records for feed intake. The PB population consisted of five sire and four dam lines, and the CB population consisted of terminal cross-progeny generated by crossing sires from one of the five PB sire lines with commercially available two-way maternal sow crosses. Estimates of rpc ranged from 0.61 to 0.71 for growth performance traits, from 0.75 to 0.82 for carcass traits, and from 0.62 to 0.67 for FE traits. Estimates of rg between growth performance, carcass, and FE traits differed within PB and CB. REI and RFI showed substantial positive rg estimates in PB (0.84) and CB (0.90) populations. The magnitudes of rpc estimates indicate that genetic progress is being realized in CB at the production level from selection on PB performance at nucleus level. However, including CB phenotypes recorded on production farms, when predicting breeding values, has the potential to increase genetic progress for these traits in CB. Given the genetic correlations with growth performance traits and the genetic correlation between the performance of PB and CB, REI is an attractive FE parameter for a breeding program.


Subject(s)
Eating/genetics , Energy Intake/genetics , Energy Metabolism/genetics , Swine/genetics , Animals , Breeding , Female , Linear Models , Male , Phenotype , Swine/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL