Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124026, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38368817

ABSTRACT

Chromosomes are intranuclear structures, their main function is to store and transmit genetic information during cell division. They are composed of tightly packed DNA in the form of chromatin, which is constantly exposed to various damaging factors. The resulting changes in DNA can have serious consequences (e.g. mutations) if they are not repaired or repaired incorrectly. In this article, we studied chromosomes isolated from human cervical cancer cells (HeLa) exposed to a genotoxic drug causing both single- and double-strand breaks. Specifically, we used bleomycin to induce DNA damage. We followed morphological and chemical changes in chromosomes upon damage induction. Atomic force microscopy was used to visualize the morphology of chromosomes, while Raman microspectroscopy enabled the detection of changes in the chemical structure of chromatin with the resolution close to the diffraction limit. Additionally, we extracted spectra corresponding to chromosome I or chromatin from hyperspectral Raman maps with convolutional neural networks (CNN), which were further analysed with the principal component analysis (PCA) algorithm to reveal molecular markers of DNA damage in chromosomes. The applied multimodal approach revealed simultaneous morphological and molecular changes, including chromosomal aberrations, alterations in DNA conformation, methylation pattern, and increased protein expression upon the bleomycin treatment at the level of the single chromosome.


Subject(s)
Bleomycin , Chromosomes , Humans , Bleomycin/pharmacology , Metaphase , Chromatin , DNA
2.
Nanoscale ; 16(10): 5294-5301, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38372161

ABSTRACT

Tau protein aggregates inside neurons in the course of Alzheimer's disease (AD). Because of the enormous number of people suffering from AD, this disease has become one of the world's major health and social problems. The presence of tau lesions clearly correlates with cognitive impairments in AD patients, thus, tau is the target of potential treatments for AD, next to amyloid-ß. The exact mechanism of tau aggregation has not been understood in detail so far; especially little is known about the structural rearrangements of tau aggregates at the growth phase. The research into tau conformation at each step of the aggregation pathway will contribute to the design of effective therapeutic approaches. To follow the secondary structure of individual tau aggregates at the growth phase, we applied tip-enhanced Raman spectroscopy (TERS). The nanospectroscopic approach enabled us to follow the structure of individual aggregates occurring in the subsequent phases of tau aggregation. We applied multivariate data analysis to extract the spectral differences for tau aggregates at different aggregation phases. Moreover, atomic force microscopy (AFM) allowed the tracking of the morphological alterations for species occurring with the progression of tau aggregation.


Subject(s)
Alzheimer Disease , Protein Aggregates , Humans , Spectrum Analysis, Raman/methods , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Protein Structure, Secondary
3.
Analyst ; 149(3): 778-788, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38109075

ABSTRACT

The manuscript presents the potential of surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) for label-free characterization of extracellular microvesicles (EVs) and their isolated membranes derived from red blood cells (RBCs) at the nanoscale and at the single-molecule level, providing detection of a few individual amino acids, protein and lipid membrane compartments. The study shows future directions for research, such as investigating the use of the mentioned techniques for the detection and diagnosis of diseases. We demonstrate that SERS and TERS are powerful techniques for identifying the biochemical composition of EVs and their membranes, allowing the detection of small molecules, lipids, and proteins. Furthermore, extracellular vesicles released from red blood cells (REVs) can be broadly classified into exosomes, microvesicles, and apoptotic bodies, based on their size and biogenesis pathways. Our study specifically focuses on microvesicles that range from 100 to 1000 nanometres in diameter, as presented in AFM images. Using SERS and TERS spectra obtained for REVs and their membranes, we were able to characterize the chemical and structural properties of microvesicle membranes with high sensitivity and specificity. This information may help better distinguish and categorize different types of EVs, leading to a better understanding of their functions and potential biomedical applications.


Subject(s)
Extracellular Vesicles , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Erythrocyte Membrane , Nanotechnology/methods , Proteins/chemistry
4.
Nanoscale ; 15(35): 14606-14614, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37614107

ABSTRACT

A better understanding of the abnormal protein aggregation and the effect of anti-aggregation agents on the fibrillation pathways and the secondary structure of aggregates can determine strategies for the early treatment of dementia. Herein, we present a combination of experimental and theoretical studies providing new insights into the influence of the anti-aggregation drug bexarotene on the secondary structure of individual amyloid-ß aggregates and its primary aggregation. The molecular rearrangements and the spatial distribution of ß-sheets within individual aggregates were monitored at the nanoscale with infrared nanospectroscopy. We observed that bexarotene limits the parallel ß-sheets formation, known to be highly abundant in fibrils at later phases of the amyloid-ß aggregation composed of in-register cross-ß structure. Moreover, we applied molecular dynamics to provide molecular-level insights into the investigated system. Both theoretical and experimental results revealed that bexarotene slows down the protein aggregation process via steric effects, largely prohibiting the antiparallel to parallel ß-sheet rearrangement. We also found that bexarotene interacts not only via the single hydrogen bond formation with the peptide backbone but also with the amino acid side residue via a hydrophobic effect. The studied model of the drug-amyloid-ß interaction contributes to a better understanding of the inhibition mechanism of the amyloid-ß aggregation by the small molecule drugs. However, our nanoscale findings need to meet in vivo research requiring different analytical approaches.


Subject(s)
Amyloid beta-Peptides , Protein Aggregates , Bexarotene/pharmacology , Amino Acids
5.
Eur J Nucl Med Mol Imaging ; 50(6): 1792-1810, 2023 05.
Article in English | MEDLINE | ID: mdl-36757432

ABSTRACT

PURPOSE: Knowledge about pancreatic cancer (PC) biology has been growing rapidly in recent decades. Nevertheless, the survival of PC patients has not greatly improved. The development of a novel methodology suitable for deep investigation of the nature of PC tumors is of great importance. Molecular imaging techniques, such as Fourier transform infrared (FTIR) spectroscopy and Raman hyperspectral mapping (RHM) combined with advanced multivariate data analysis, were useful in studying the biochemical composition of PC tissue. METHODS: Here, we evaluated the potential of molecular imaging in differentiating three groups of PC tumors, which originate from different precursor lesions. Specifically, we comprehensively investigated adenocarcinomas (ACs): conventional ductal AC, intraductal papillary mucinous carcinoma, and ampulla of Vater AC. FTIR microspectroscopy and RHM maps of 24 PC tissue slides were obtained, and comprehensive advanced statistical analyses, such as hierarchical clustering and nonnegative matrix factorization, were performed on a total of 211,355 Raman spectra. Additionally, we employed deep learning technology for the same task of PC subtyping to enable automation. The so-called convolutional neural network (CNN) was trained to recognize spectra specific to each PC group and then employed to generate CNN-prediction-based tissue maps. To identify the DNA methylation spectral markers, we used differently methylated, isolated DNA and compared the observed spectral differences with the results obtained from cellular nuclei regions of PC tissues. RESULTS: The results showed significant differences among cancer tissues of the studied PC groups. The main findings are the varying content of ß-sheet-rich proteins within the PC cells and alterations in the relative DNA methylation level. Our CNN model efficiently differentiated PC groups with 94% accuracy. The usage of CNN in the classification task did not require Raman spectral data preprocessing and eliminated the need for extensive knowledge of statistical methodologies. CONCLUSIONS: Molecular spectroscopy combined with CNN technology is a powerful tool for PC detection and subtyping. The molecular fingerprint of DNA methylation and ß-sheet cytoplasmic proteins established by our results is different for the main PC groups and allowed the subtyping of pancreatic tumors, which can improve patient management and increase their survival. Our observations are of key importance in understanding the variability of PC and allow translation of the methodology into clinical practice by utilizing liquid biopsy testing.


Subject(s)
DNA Methylation , Pancreatic Neoplasms , Humans , Protein Conformation, beta-Strand , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Spectrum Analysis , Pancreatic Neoplasms
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121595, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35843060

ABSTRACT

Tip-enhanced Raman (TER) spectroscopy combines the nanometric spatial resolution of atomic force microscopy (AFM) and the chemical sensitivity of Raman spectroscopy. Thus, it provides a unique possibility to obtain spectroscopic information on individual, nanometre-size molecules. The enhancement of Raman scattering cross-section requires modification of the AFM tip apex with a plasmonic nanostructure. Despite numerous advances of TERS research, attaining good reproducibility and stable enhancement is still challenging mainly due to the lack of optimized probes and sample preparation procedures. Moreover, current nanospectroscopic standard samples - carbon nanotubes (CNTs) have relatively simple chemical structure, and therefore, they are far from real-life analytes, especially biological samples. In this work we focus on the optimization of TERS technique for efficient DNA measurements, including: a preparation of atomically-flat gold substrates, fixative free deposition of DNA and optimization of TERS probe preparation. Here we demonstrate a comprehensive comparison of the efficacy of several types of TERS probes. Applying the systematic approach, we obtained reliable and reproducible TER spectra of DNA. Thus, we provide preparation procedures of a new standard TERS sample, TERS substrates and TERS probes. Our research provides a solid foundation for further research on DNA and its interaction with other biomolecules upon biologically significant processes such as DNA damage and repair.


Subject(s)
Nanotubes, Carbon , Spectrum Analysis, Raman , DNA , Microscopy, Atomic Force/methods , Reproducibility of Results , Spectrum Analysis, Raman/methods
7.
Sci Rep ; 12(1): 12158, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840615

ABSTRACT

DNA double-strand breaks (DSBs) are typical DNA lesions that can lead to cell death, translocations, and cancer-driving mutations. The repair process of DSBs is crucial to the maintenance of genomic integrity in all forms of life. However, the limitations of sensitivity and special resolution of analytical techniques make it difficult to investigate the local effects of chemotherapeutic drugs on DNA molecular structure. In this work, we exposed DNA to the anticancer antibiotic bleomycin (BLM), a damaging factor known to induce DSBs. We applied a multimodal approach combining (i) atomic force microscopy (AFM) for direct visualization of DSBs, (ii) surface-enhanced Raman spectroscopy (SERS) to monitor local conformational transitions induced by DSBs, and (iii) multivariate statistical analysis to correlate the AFM and SERS results. On the basis of SERS results, we identified that bands at 1050 cm-1 and 730 cm-1 associated with backbone and nucleobase vibrations shifted and changed their intensities, indicating conformational modifications and strand ruptures. Based on averaged SERS spectra, the PLS regressions for the number of DSBs caused by corresponding molar concentrations of bleomycin were calculated. The strong correlation (R2 = 0.92 for LV = 2) between the predicted and observed number of DSBs indicates, that the model can not only predict the number of DSBs from the spectra but also detect the spectroscopic markers of DNA damage and the associated conformational changes.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Bleomycin/pharmacology , DNA/chemistry , DNA Damage
8.
Adv Colloid Interface Sci ; 301: 102614, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35190313

ABSTRACT

Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.


Subject(s)
Lipids , Proteins , Cell Membrane/chemistry , Lipid Bilayers/chemistry , Lipids/analysis , Membranes, Artificial , Microscopy, Atomic Force/methods , Molecular Structure , Proteins/metabolism
9.
Molecules ; 26(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34770895

ABSTRACT

DNA covers the genetic information in all living organisms. Numerous intrinsic and extrinsic factors may influence the local structure of the DNA molecule or compromise its integrity. Detailed understanding of structural modifications of DNA resulting from interactions with other molecules and surrounding environment is of central importance for the future development of medicine and pharmacology. In this paper, we review the recent achievements in research on DNA structure at nanoscale. In particular, we focused on the molecular structure of DNA revealed by high-resolution AFM (Atomic Force Microscopy) imaging at liquid/solid interfaces. Such detailed structural studies were driven by the technical developments made in SPM (Scanning Probe Microscopy) techniques. Therefore, we describe here the working principles of AFM modes allowing high-resolution visualization of DNA structure under native (liquid) environment. While AFM provides well-resolved structure of molecules at nanoscale, it does not reveal the chemical structure and composition of studied samples. The simultaneous information combining the structural and chemical details of studied analyte allows achieve a comprehensive picture of investigated phenomenon. Therefore, we also summarize recent molecular spectroscopy studies, including Tip-Enhanced Raman Spectroscopy (TERS), on the DNA structure and its structural rearrangements.


Subject(s)
DNA/chemistry , DNA/ultrastructure , Microscopy, Atomic Force , Nucleic Acid Conformation , Spectrum Analysis , Microscopy, Atomic Force/methods , Molecular Structure , Solvents , Spectrum Analysis/methods , Spectrum Analysis, Raman/methods
10.
Molecules ; 25(11)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471300

ABSTRACT

Abnormal protein aggregation has been intensively studied for over 40 years and broadly discussed in the literature due to its significant role in neurodegenerative diseases etiology. Structural reorganization and conformational changes of the secondary structure upon the aggregation determine aggregation pathways and cytotoxicity of the aggregates, and therefore, numerous analytical techniques are employed for a deep investigation into the secondary structure of abnormal protein aggregates. Molecular spectroscopies, including Raman and infrared ones, are routinely applied in such studies. Recently, the nanoscale spatial resolution of tip-enhanced Raman and infrared nanospectroscopies, as well as the high sensitivity of the surface-enhanced Raman spectroscopy, have brought new insights into our knowledge of abnormal protein aggregation. In this review, we order and summarize all nano- and micro-spectroscopic marker bands related to abnormal aggregation. Each part presents the physical principles of each particular spectroscopic technique listed above and a concise description of all spectral markers detected with these techniques in the spectra of neurodegenerative proteins and their model systems. Finally, a section concerning the application of multivariate data analysis for extraction of the spectral marker bands is included.


Subject(s)
Protein Aggregates/physiology , Amyloid/chemistry , Animals , Humans , Multivariate Analysis , Principal Component Analysis , Spectrum Analysis, Raman
11.
Semin Cell Dev Biol ; 73: 115-124, 2018 01.
Article in English | MEDLINE | ID: mdl-28694112

ABSTRACT

From the first experiments of the atomic force microscopy (AFM) with biological samples, the range of its potential applications grows extensively. One of them is the use of AFM to characterize biophysical fingerprints of cancer progression in search of non-labelled biomarkers of the disease. The technique offers various functionalities, starting from surface imaging to detection of interaction forces, delivering quantitative parameters that can describe changes characteristic for various diseases, including cancer. In this review, the special emphasis was laid on these studies that compare the AFM-derived properties of reference and cancerous cells using all functionalities from cellular deformability measurements to quantification of the interaction forces at the single-molecule and single-cell levels. Despite the large effort and evidence of the microscope applicability to detect pathologically altered cells, there are still practical challenges remained to be solved before AFM can be implemented for routine cancer tracking and diagnosis. To-date, the AFM can be used to achieve a better understanding of cancer-related processes and mechanisms that could be further employed to design high-resolution clinical assays in a quantitative way.


Subject(s)
Cell Adhesion , Microscopy, Atomic Force , Neoplasms/pathology , Adhesiveness , Elasticity , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...