Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Oral Biosci ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38579987

ABSTRACT

OBJECTIVES: Periodontitis, commonly associated with Porphyromonas gingivalis (Pg), involves intricate alterations of oral intercellular interactions, in which extracellular vesicles (EVs) play a pivotal role. The understanding of the miRNA profiles in the EVs derived from Pg-infected cells (Pg-EVs) remains incomplete despite acknowledging their importance in intercellular communication during periodontitis. Therefore, our objective was to identify and characterize the miRNAs enriched in Pg-EVs. METHODS: Microarray analysis was conducted to examine the miRNA profiles in the EVs derived from Pg-infected THP-1 cells. We compared the identified miRNAs with those upregulated in the EVs after stimulation with LPS. Additionally, we explored how inhibiting TLR signaling during Pg infection affects the transcription of specific miRNAs. We investigated the unique sequence motifs specific to the miRNAs concentrated in Pg-EVs. RESULTS: The levels of eleven miRNAs, including miR-155, were increased in Pg-EVs compared with those elevated after LPS stimulation. The Pg-induced miR-155 upregulation via TLR2 but not TLR4 signaling suggests the influence of TLR signaling on the miRNA composition of EVs. Furthermore, the miRNAs upregulated in Pg-EVs contained AGAGGG and GRGGSGC sequence motifs. CONCLUSIONS: Our findings demonstrate that Pg-induced alterations in EV-containing miRNA composition occur in a TLR4-independent manner. Notably, the concentrated miRNAs in Pg-EVs harbor specific motifs with a high G + C content within their sequences. The upregulation of specific miRNAs in EVs under infectious conditions suggests the influence of both innate immune receptor signals and miRNA sequence characteristics.

2.
Oral Dis ; 29(8): 3688-3697, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36266256

ABSTRACT

OBJECTIVE: Porphyromonas gingivalis (Pg) is thought to be involved in the progression of Alzheimer's disease (AD). Whether Pg or its contents can reach the brain and directly affect neuropathology is, however, unknown. Here, we investigated whether outer membrane vesicles (OMVs) of Pg translocate to the brain and induce the pathogenic features of AD. MATERIAL AND METHODS: Pg OMVs were injected into the abdominal cavity of mice for 12 weeks. Pg OMV translocation to the brain was detected by immunohistochemistry using an anti-gingipain antibody. Tau protein and microglial activation in the mouse brain were examined by western blotting and immunohistochemistry. The effect of gingipains on inflammation was assessed by real-time polymerase chain reaction using human microglial HMC3 cells. RESULTS: Gingipains were detected in the region around cerebral ventricles, choroid plexus, and ventricular ependymal cells in Pg OMV-administered mice. Tau and phosphorylated Tau protein increased and microglia were activated. Pg OMVs also increased the gene expression of proinflammatory cytokines in HMC3 cells in a gingipain-dependent manner. CONCLUSION: Pg OMVs, including gingipains, can reach the cerebral ventricle and induce neuroinflammation by activating microglia. Pg OMVs may provide a better understanding of the implications of periodontal diseases in neurodegenerative conditions such as AD.


Subject(s)
Alzheimer Disease , Microglia , Humans , Animals , Mice , Gingipain Cysteine Endopeptidases , tau Proteins , Porphyromonas gingivalis , Cerebral Ventricles
3.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166236, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34389473

ABSTRACT

Periodontal diseases are common inflammatory diseases that are induced by infection with periodontal bacteria such as Porphyromonas gingivalis (Pg). The association between periodontal diseases and many types of systemic diseases has been demonstrated; the term "periodontal medicine" is used to describe how periodontal infection/inflammation may impact extraoral health. However, the molecular mechanisms by which the factors produced in the oral cavity reach multiple distant organs and impact general health have not been elucidated. Extracellular vesicles (EVs) are nano-sized spherical structures secreted by various types of cells into the tissue microenvironment, and influence pathophysiological conditions by delivering their cargo. However, a detailed understanding of the effect of EVs on periodontal medicine is lacking. In this study, we investigated whether EVs derived from Pg-infected macrophages reach distant organs in mice and influence the pathophysiological status. EVs were isolated from human macrophages, THP-1 cells, infected with Pg. We observed that EVs from Pg-infected THP-1 cells (Pg-inf EVs) contained abundant core histone proteins such as histone H3 and translocated to the lungs, liver, and kidneys of mice. Pg-inf EVs also induced pulmonary injury, including edema, vascular congestion, inflammation, and collagen deposition causing alveoli destruction. The Pg-inf EVs or the recombinant histone H3 activated the NF-κB pathway, leading to increase in the levels of pro-inflammatory cytokines in human lung epithelial A549 cells. Our results suggest a possible mechanism by which EVs produced in periodontal diseases contribute to the progression of periodontal medicine.


Subject(s)
Extracellular Vesicles/immunology , Lung Injury/immunology , Macrophages/immunology , Periodontitis/complications , Porphyromonas gingivalis/immunology , A549 Cells , Animals , Bacteroidaceae Infections , Disease Models, Animal , Extracellular Vesicles/metabolism , Female , Humans , Lung Injury/pathology , Macrophages/cytology , Macrophages/metabolism , Mice , Periodontitis/immunology , Periodontitis/microbiology , Porphyromonas gingivalis/pathogenicity , THP-1 Cells
4.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165731, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32088316

ABSTRACT

Outer membrane vesicles (OMVs) are nanosized particles derived from the outer membrane of gram-negative bacteria. Oral bacterium Porphyromonas gingivalis (Pg) is known to be a major pathogen of periodontitis that contributes to the progression of periodontal disease by releasing OMVs. The effect of Pg OMVs on systemic diseases is still unknown. To verify whether Pg OMVs affect the progress of diabetes mellitus, we analyzed the cargo proteins of vesicles and evaluated their effect on hepatic glucose metabolism. Here, we show that Pg OMVs were equipped with Pg-derived proteases gingipains and translocated to the liver in mice. In these mice, the hepatic glycogen synthesis in response to insulin was decreased, and thus high blood glucose levels were maintained. Pg OMVs also attenuated the insulin-induced Akt/glycogen synthase kinase-3 ß (GSK-3ß) signaling in a gingipain-dependent fashion in hepatic HepG2 cells. These results suggest that the delivery of gingipains mediated by Pg OMV elicits changes in glucose metabolisms in the liver and contributes to the progression of diabetes mellitus.


Subject(s)
Bacterial Outer Membrane/metabolism , Gingipain Cysteine Endopeptidases/genetics , Periodontitis/genetics , Porphyromonas gingivalis/genetics , Animals , Bacterial Outer Membrane/pathology , Disease Models, Animal , Gingipain Cysteine Endopeptidases/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Humans , Insulin Resistance/genetics , Liver/metabolism , Liver/microbiology , Mice , Periodontitis/microbiology , Periodontitis/pathology , Porphyromonas gingivalis/metabolism , Porphyromonas gingivalis/pathogenicity , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...