Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Res Bull ; 194: 54-63, 2023 03.
Article in English | MEDLINE | ID: mdl-36646145

ABSTRACT

INTRODUCTION AND OBJECTIVE: Stroke causes irreversible damage, particularly to the hippocampus. Evidence suggests that exercise training may mitigate adverse structural and functional consequences of an ischemic lesion in the brain. The purpose of this study was to investigate the effects of preconditioning exercise on expression of neurotrophic factor genes and proteins in hippocampalCA1 region and their relationship with sensorimotor recovery following global ischemia/reperfusion (Is/Re) injury in a rat model of stroke. METHODS: Male Wistar rats were randomly assigned to Exercise+Ischemia/Reperfusion (Ex+Is/Re),Control+Ischemia/Reperfusion (Co+Is/Re), and Sham treatments. Rats in the exercise groups ran on a treadmill for 45 min/d for five days/week for 8 consecutive weeks prior to Is/Re lesion.Ischemia was induced by common carotid artery occlusion (CCAO). The ladder rung walking task was used to assess functional impairments and recovery following ischemic lesion.Tissue from hippocampal area CA1 was inspected for ischemia-induced cell loss and gene and protein expression linked to neurotrophins NT-3, NT-4, and their receptorsTrkB and TrkC. RESULTS: CCAO caused hippocampal cell death in CA1 and resulted in significant sensori motor impairments in the ladder rung walking task. In contrast, pre-ischemic exercise considerably reduced cell death and supported sensorimotor recovery following CCAO.In addition, NT-3, NT-4,TrkB and TrkC gene expression and their protein levels were significantly increased inthe Ex+Is/Re group compared to Co+Is/Re (p < 0.05). CONCLUSION: The findings showed that pre-ischemic exercise can exert neuroprotective effects via NT-3 and NT-4 pathways against ischemia in hippocampal CA1 neurons and promote post-injury sensorimotor recovery.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Stroke , Animals , Male , Rats , Brain Ischemia/metabolism , Ischemia , Neuroprotective Agents/pharmacology , Rats, Wistar
2.
Metab Brain Dis ; 37(6): 1843-1853, 2022 08.
Article in English | MEDLINE | ID: mdl-35596908

ABSTRACT

Early treatment of ischemic stroke is one of the most effective ways to reduce brains' cell death and promote functional recovery. This study was designed to examine the effect of aerobic exercise on post ischemia/reperfusion injury on concentration and expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) after inducing a neuronal loss in CA1 region of hippocampus in Male Wistar rats. Three experimental groups including sham(S), ischemia/reperfusion-control (IRC) and ischemia/reperfusion exercise (IRE) were used for this purpose. The rats in the IRE group received a bilateral carotid artery occlusion treatment. They ran for 45 minutes on a treadmill five days per week for eight consecutive weeks. Cresyl violet (Nissl), Hematoxylin (H & E) and Eosin staining procedure were used to determine the extent of damage. A ladder rung walking task was used to assess the functional impairments and recovery after the ischemic lesion. ELISA and immunohistochemistry method were employed to measure BDNF and VEGF protein expressions. The result showed that the brain ischemia/reperfusion condition increased the cell death in hippocampal CA1 neurons and impaired motor performance on the ladder rung task whereas the aerobic exercise program significantly decreased the brain cell's death and improved motor skill performance. It was concluded that ischemic brain lesion decreased the BDNF and VEGF expression. It seems that the aerobic exercise following the ischemia/reperfusion potentially promotes neuroprotective mechanisms and neuronal repair and survival mediated partly by BDNF and other pathways.


Subject(s)
Brain Ischemia , Stroke , Animals , Brain Ischemia/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Male , Neuroprotection , Rats , Rats, Wistar , Stroke/therapy , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
3.
Int J Vitam Nutr Res ; 91(5-6): 507-512, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32400317

ABSTRACT

Physical exercise increases free radicals production; antioxidant supplementation may improve the muscle fiber's ability to scavenge ROS and protect muscles against exercise-induced oxidative damage. This study was designed to examine the effects of all-trans resveratrol supplementation as an antioxidant to mediate anti-oxidation and lipid per-oxidation responses to exercise in male Wistar rats. Sixty-four male Wistar rats were randomly divided into four equal number (n = 16) including training + supplement (TS), training (T), supplement (S) and control (C) group. The rats in TS and S groups received a dose of 10 mg/kg resveratrol per day via gavage. The training groups ran on a rodent treadmill 5 times per week at the speed of 10 m/min for 10 min; the speed gradually increased to 30 m/min for 60 minutes at the end of 12th week. The acute phase of exercise protocol included a speed of 25 m/min set to an inclination of 10° to the exhaustion point. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activity, non-enzymatic antioxidants bilirubin, uric acid, lipid peroxidation levels (MDA) and the total antioxidant capacity (TAC) were measured after the exercise termination. The data were analyzed by using one-way ANOVA. The result showed that endurance training caused a significant increase in MDA level [4.5 ± 0.75 (C group) vs. 5.9 ± 0.41 nmol/l (T group)] whereas it decreased the total antioxidant capacity [8.5 ± 1.35 (C group) vs. 7.1 ± 0.55 mmol/l (T group)] (p = 0.001). In addition, GPx and CAT decreased but not significantly (p > 0.05). The training and t-resveratrol supplementation had no significant effect on the acute response of all variables except MDA [4.3 ± 1.4 (C group) vs. 4.0 ± 0.90 nmol/l (TS group)] (p = 0.001) and TAC [8.5 ± 0.90 (C group) vs. 6.6 ± 0.80 mmol/l (TS group)] (p = 0.004). It was concluded that resveratrol supplementation may prevent exercise-induced oxidative stress by preventing lipid peroxidation.


Subject(s)
Physical Conditioning, Animal , Animals , Antioxidants , Catalase/metabolism , Dietary Supplements , Glutathione Peroxidase/metabolism , Lipid Peroxidation , Male , Oxidative Stress , Rats , Rats, Wistar , Resveratrol , Superoxide Dismutase/metabolism
4.
Brain Res Bull ; 153: 250-256, 2019 11.
Article in English | MEDLINE | ID: mdl-31545998

ABSTRACT

INTRODUCTION & OBJECTIVE: Cerebral ischemia causes physiological and biochemical cellular changes that ultimately result in structural and functional damage to hippocampal neurons. Ischemia also raises endogenous adenosine release that in turn has neuroprotective effects. The purpose of this study was to evaluate the effect of exogenous adenosine on mitigating neuronal lesions to the CA1 region of hippocampus and A2A protein expression following cerebral I/R in rats. METHODS: Male Wistar rats were randomly assigned to three experimental groups (sham, ischemia + control, and ischemia + adenosine). A daily dose of adenosine (0.1 mg/ml/kg, i.p.) was administered starting 24 h post-ischemia for 7 days. Ischemia was induced by occlusion of both common carotid arteries for 45 min. Cresyl violet and Hematoxylin Eosin staining were used to assess lesion extent and location. To investigate the expression and protein levels, immunohistochemistry and enzyme-linked immunosorbent assay method was used. RESULTS: The cerebral ischemia caused neuronal loss in the CA1 region and reduced sensorimotor functions in lesion animals. Injection of adenosine significantly diminished cell death and improved sensorimotor functional recovery. Moreover, the expression and concentration of A2A protein was significantly greater in the adenosine group compared to the ischemia group. CONCLUSION: This study showed that the administration of exogenous adenosine promotes protection against cell death and supports functional recovery following ischemic injury.


Subject(s)
Adenosine/pharmacology , Brain Ischemia/drug therapy , Adenosine/metabolism , Animals , Brain/drug effects , Brain Ischemia/physiopathology , CA1 Region, Hippocampal/drug effects , Cell Death/drug effects , Disease Models, Animal , Hippocampus/drug effects , Male , Neurons/drug effects , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Rats , Rats, Wistar , Recovery of Function/drug effects , Reperfusion Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL