Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Direct ; 18(1): 86, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38124116

ABSTRACT

Senescent microglia are a distinct microglial phenotype present in aging brain that have been implicated in the progression of aging and age-related neurodegenerative diseases. However, the specific mechanisms that trigger microglial senescence are largely unknown. Quinolinic acid (QA) is a cytotoxic metabolite produced upon abnormal activation of microglia. Brain aging and age-related neurodegenerative diseases have an elevated concentration of QA. In the present study, we investigated whether QA promotes aging and aging-related phenotypes in microglia and C. elegans. Here, we demonstrate for the first time that QA, secreted by abnormal microglial stimulation, induces impaired mitophagy by inhibiting mitolysosome formation and consequently promotes the accumulation of damaged mitochondria due to reduced mitochondrial turnover in microglial cells. Defective mitophagy caused by QA drives microglial senescence and poor healthspan in C. elegans. Moreover, oxidative stress can mediate QA-induced mitophagy impairment and senescence in microglial cells. Importantly, we found that restoration of mitophagy by mitophagy inducer, urolithin A, prevents microglial senescence and improves healthspan in C. elegans by promoting mitolysosome formation and rescuing mitochondrial turnover inhibited by QA. Thus, our study indicates that mitolysosome formation impaired by QA is a significant aetiology underlying aging-associated changes. QA-induced mitophagy impairment plays a critical role in neuroinflammation and age-related diseases. Further, our study suggests that mitophagy inducers such as urolithin A may offer a promising anti-aging strategy for the prevention and treatment of neuroinflammation-associated brain aging diseases.


Subject(s)
Mitophagy , Neurodegenerative Diseases , Animals , Microglia , Quinolinic Acid/metabolism , Caenorhabditis elegans , Neuroinflammatory Diseases
2.
Aging Cell ; 22(11): e14003, 2023 11.
Article in English | MEDLINE | ID: mdl-37828862

ABSTRACT

The lifespan of schizophrenia patients is significantly shorter than the general population. Olanzapine is one of the most commonly used antipsychotic drugs (APDs) for treating patients with psychosis, including schizophrenia and bipolar disorder. Despite their effectiveness in treating positive and negative symptoms, prolonged exposure to APDs may lead to accelerated aging and cognitive decline, among other side effects. Here we report that dysfunctional mitophagy is a fundamental mechanism underlying accelerated aging induced by olanzapine, using in vitro and in vivo (Caenorhabditis elegans) models. We showed that the aberrant mitophagy caused by olanzapine was via blocking mitophagosome-lysosome fusion. Furthermore, olanzapine can induce mitochondrial damage and hyperfragmentation of the mitochondrial network. The mitophagosome-lysosome fusion in olanzapine-induced aging models can be restored by a mitophagy inducer, urolithin A, which alleviates defective mitophagy, mitochondrial damage, and fragmentation of the mitochondrial network. Moreover, the mitophagy inducer ameliorated behavioral changes induced by olanzapine, including shortened lifespan, and impaired health span, learning, and memory. These data indicate that olanzapine impairs mitophagy, leading to the shortened lifespan, impaired health span, and cognitive deficits. Furthermore, this study suggests the potential application of mitophagy inducers as therapeutic strategies to reverse APD-induced adverse effects associated with accelerated aging.


Subject(s)
Antipsychotic Agents , Animals , Humans , Olanzapine/pharmacology , Antipsychotic Agents/adverse effects , Aging , Mitophagy , Mitochondria , Caenorhabditis elegans
SELECTION OF CITATIONS
SEARCH DETAIL
...