Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(9): 2735-2742, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38277644

ABSTRACT

Recent advances in two-photon polymerization fabrication processes are paving the way to creating macroscopic metamaterials with microscale architectures, which exhibit mechanical properties superior to their bulk material counterparts. These metamaterials typically feature lightweight, complex patterns such as lattice or minimal surface structures. Conventional tools for investigating these microscale structures, such as scanning electron microscopy, cannot easily probe the internal features of these structures, which are critical for a comprehensive assessment of their mechanical behavior. In turn, we demonstrate an optical confocal microscopy-based approach that allows for high-resolution optical imaging of internal deformations and fracture processes in microscale metamaterials under mechanical load. We validate this technique by investigating an exemplary metamaterial lattice structure of 80 × 80 × 80 µm3 in size. This technique can be extended to other metamaterial systems and holds significant promise to enhance our understanding of their real-world performance under loading conditions.

2.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: mdl-35021222

ABSTRACT

Next-generation sequencing has resulted in an explosion of available data, much of which remains unstudied in terms of biochemical function; yet, experimental characterization of these sequences has the potential to provide unprecedented insight into the evolution of enzyme activity. One way to make inroads into the experimental study of the voluminous data available is to engage students by integrating teaching and research in a college classroom such that eventually hundreds or thousands of enzymes may be characterized. In this study, we capitalize on this potential to focus on SABATH methyltransferase enzymes that have been shown to methylate the important plant hormone, salicylic acid (SA), to form methyl salicylate. We analyze data from 76 enzymes of flowering plant species in 23 orders and 41 families to investigate how widely conserved substrate preference is for SA methyltransferase orthologs. We find a high degree of conservation of substrate preference for SA over the structurally similar metabolite, benzoic acid, with recent switches that appear to be associated with gene duplication and at least three cases of functional compensation by paralogous enzymes. The presence of Met in active site position 150 is a useful predictor of SA methylation preference in SABATH methyltransferases but enzymes with other residues in the homologous position show the same substrate preference. Although our dense and systematic sampling of SABATH enzymes across angiosperms has revealed novel insights, this is merely the "tip of the iceberg" since thousands of sequences remain uncharacterized in this enzyme family alone.


Subject(s)
Magnoliopsida , Methyltransferases , Plant Proteins , Magnoliopsida/classification , Magnoliopsida/enzymology , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Salicylic Acid/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...