Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Main subject
Publication year range
1.
Chem Commun (Camb) ; 59(10): 1321-1324, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36637086

ABSTRACT

Sodium-ion batteries (NIBs) are emerging as promising devices for energy storage applications. Porous solids, such as metal-organic frameworks (MOFs), are well suited as electrode materials for technologies involving bulkier charge carriers. However, only limited progress has been made using pristine MOFs, primarily due to lack of redox-active organic groups in the materials. In this work a azo-functional MOF, namely UiO-abdc, is presented as an electrode compound for sodium-ion insertion. The MOF delivers a stable capacity (∼100 mA h g-1) over 150 cycles, and post-cycling characterisation validates the stability of the MOF and participation of the azo-group in charge storage. This study can accelerate the realisation of pristine solids, such as MOFs and other porous organic compounds, as battery materials.

2.
RSC Adv ; 12(19): 12211-12218, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35481108

ABSTRACT

Aqueous rechargeable zinc-ion batteries (AZIBs) have drawn enormous attention in stationary applications due to their high safety and low cost. However, the search for new positive electrode materials with satisfactory electrochemical performance for practical applications remains a challenge. In this work, we report a comprehensive study on the use of the vanadium tellurate (NH4)4{(VO2)2[Te2O8(OH)2]}·2H2O, which is tested for the first time as a cathode material in AZIBs.

3.
Magn Reson Chem ; 60(5): 489-503, 2022 May.
Article in English | MEDLINE | ID: mdl-35023583

ABSTRACT

Conjugated alkali metal dicarboxylates have recently received attention for applications as organic anode materials in lithium- and sodium-ion batteries. In order to understand and optimise these materials, it is important to be able to characterise both the long-range and local aspects of the crystal structure, which may change during battery cycling. Furthermore, some materials can display polymorphism or hydration behaviour. NMR crystallography, which combines long-range crystallographic information from diffraction with local information from solid-state NMR via interpretation aided by DFT calculations, is one such approach, but this has not yet been widely applied to conjugated dicarboxylates. In this work, we evaluate the application of NMR crystallography for a set of model lithium and sodium dicarboxylate salts. We investigate the effect of different DFT geometry optimisation strategies and find that the calculated NMR parameters are not systematically affected by the choice of optimisation method, although the inclusion of dispersion correction schemes is important to accurately reproduce the experimental unit cell parameters. We also observe hydration behaviour for two of the sodium salts and provide insight into the structure of an as-yet uncharacterised structure of sodium naphthalenedicarboxylate. This highlights the importance of sample preparation and characterisation for organic sodium-ion battery anode materials in particular.

4.
Nanoscale Adv ; 3(11): 3145-3158, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-34124579

ABSTRACT

In this work, we apply an amine-assisted silica pillaring method to create the first example of a porous Mo2TiC2 MXene with nanoengineered interlayer distances. The pillared Mo2TiC2 has a surface area of 202 m2 g-1, which is among the highest reported for any MXene, and has a variable gallery height between 0.7 and 3 nm. The expanded interlayer distance leads to significantly enhanced cycling performance for Li-ion storage, with superior capacity, rate capably and cycling stability in comparison to the non-pillared analogue. The pillared Mo2TiC2 achieved a capacity over 1.7 times greater than multilayered MXene at 20 mA g-1 (≈320 mA h g-1) and 2.5 times higher at 1 A g-1 (≈150 mA h g-1). The fast-charging properties of pillared Mo2TiC2 are further demonstrated by outstanding stability even at 1 A g-1 (under 8 min charge time), retaining 80% of the initial capacity after 500 cycles. Furthermore, we use a combination of spectroscopic techniques (i.e. XPS, NMR and Raman) to show unambiguously that the charge storage mechanism of this MXene occurs by a conversion reaction through the formation of Li2O. This reaction increases by 2-fold the capacity beyond intercalation, and therefore, its understanding is crucial for further development of this family of materials. In addition, we also investigate for the first time the sodium storage properties of the pillared and non-pillared Mo2TiC2.

5.
Langmuir ; 36(16): 4370-4382, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32275436

ABSTRACT

MXenes are a recently discovered class of two-dimensional materials that have shown great potential as electrodes in electrochemical energy storage devices. Despite their promise in this area, MXenes can still suffer limitations in the form of restricted ion accessibility between the closely spaced multistacked MXene layers causing low capacities and poor cycle life. Pillaring, where a secondary species is inserted between layers, has been used to increase interlayer spacings in clays with great success but has had limited application in MXenes. We report a new amine-assisted pillaring methodology that successfully intercalates silica-based pillars between Ti3C2 layers. Using this technique, the interlayer spacing can be controlled with the choice of amine and calcination temperature, up to a maximum of 3.2 nm, the largest interlayer spacing reported for an MXene. Another effect of the pillaring is a dramatic increase in surface area, achieving BET surface areas of 235 m2 g-1, a sixty-fold increase over the unpillared material and the highest reported for MXenes using an intercalation-based method. The intercalation mechanism was revealed by different characterization techniques, allowing the surface chemistry to be optimized for the pillaring process. The porous MXene was tested for Na-ion battery applications and showed superior capacity, rate capability and remarkable stability compared with those of the nonpillared materials, retaining 98.5% capacity between the 50th and 100th cycles. These results demonstrate the applicability and promise of pillaring techniques applied to MXenes providing a new approach to optimizing their properties for a range of applications, including energy storage, conversion, catalysis, and gas separations.

6.
Chemphyschem ; 19(14): 1722-1732, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29667743

ABSTRACT

Multinuclear (1 H, 13 C, 25 Mg) solid-state NMR data is reported for a series of magnesium acetate phases Mg(CH3 COO)2 ⋅ nH2 O (n=0 (two polymorphs), 1, 4). The central focus here is 25 Mg as this set of compounds provides an expanded range of local magnesium coordinations compared to what has previously been reported in the literature using NMR. These four compounds provide 10 distinct magnesium sites with varying NMR interaction parameters. One of the anhydrous crystal structures (α) has an MgO7 site which is reported, to the best of our knowledge, for the first time. For those phases with a single crystal structure, a combination of magic angle spinning (MAS) NMR at high magnetic field (20 T) and first principles density functional theory (DFT) calculations demonstrates the value of including 25 Mg in NMR crystallography approaches. For the second anhydrate phase (ß), where no single crystal structure exists, the multinuclear NMR data clearly show the multiplicity of sites for the different elements, with 25 Mg satellite transition (ST) MAS NMR revealing four inequivalent magnesium environments, which is new information constraining future refinement of the structure. This study highlights the sensitivity of 25 Mg NMR to the local environment, an observation important for several sub-disciplines of chemistry where the structural chemistry of magnesium is likely to be crucial.

7.
J Am Chem Soc ; 139(14): 5140-5148, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28319391

ABSTRACT

The great utility and importance of zeolites in fields as diverse as industrial catalysis and medicine has driven considerable interest in the ability to target new framework types with novel properties and applications. The recently introduced and unconventional assembly, disassembly, organization, reassembly (ADOR) method represents one exciting new approach to obtain solids with targeted structures by selectively disassembling preprepared hydrolytically unstable frameworks and then reassembling the resulting products to form materials with new topologies. However, the hydrolytic mechanisms underlying such a powerful synthetic method are not understood in detail, requiring further investigation of the kinetic behavior and the outcome of reactions under differing conditions. In this work, we report the optimized ADOR synthesis, and subsequent solid-state characterization, of 17O- and doubly 17O- and 29Si-enriched UTL-derived zeolites, by synthesis of 29Si-enriched starting Ge-UTL frameworks and incorporation of 17O from 17O-enriched water during hydrolysis. 17O and 29Si NMR experiments are able to demonstrate that the hydrolysis and rearrangement process occurs over a much longer time scale than seen by diffraction. The observation of unexpectedly high levels of 17O in the bulk zeolitic layers, rather than being confined only to the interlayer spacing, reveals a much more extensive hydrolytic rearrangement than previously thought. This work sheds new light on the role played by water in the ADOR process and provides insight into the detailed mechanism of the structural changes involved.

8.
Solid State Nucl Magn Reson ; 65: 64-74, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25465483

ABSTRACT

The substitution of the divalent cations Mg(2+) and Zn(2+) into the aluminophosphate (AlPO) framework of STA-2 has been studied using an "NMR crystallographic" approach, combining multinuclear solid-state NMR spectroscopy, X-ray diffraction and first-principles calculations. Although the AlPO framework itself is inherently neutral, the positive charge of the organocation template in an as-made material is usually balanced either by the coordination to the framework of anions from the synthesis solution, such as OH(-) or F(-), and/or by the substitution of aliovalent cations. However, the exact position and distribution of the substituted cations can be difficult to determine, but can have a significant impact upon the catalytic properties a material exhibits once calcined. For as-made Mg substituted STA-2, the positive charge of the organocation template is balanced by the substitution of Mg(2+) for Al(3+) and, where required, by hydroxide anions coordinated to the framework [27] Al MAS NMR spectra show that Al is present in both tetrahedral and five-fold coordination, with the latter dependent on the amount of substituted cations, and confirms the bridging nature of the hydroxyl groups, while high-resolution MQMAS spectra are able to show that Mg appears to preferentially substitute on the Al1 site. This conclusion is also supported by first-principles calculations. The calculations also show that (31)P chemical shifts depend not only on the topologically-distinct site in the SAT framework, but also on the number of next-nearest-neighbour Mg species, and the exact nature of the coordinated hydroxyls (whether the P atom forms part of a six-membered ring, P(OAl)2OH, where OH bridges between two Al atoms). The calculations demonstrate a strong correlation between the (31)P isotropic chemical shift and the average 〈P-O-M〉 bond angle. In contrast, for Zn substituted STA-2, both X-ray diffraction and NMR spectroscopy show less preference for substitution onto Al1 or Al2, with both appearing to be present, although that into Al1 appears slightly more favoured.

9.
Chemistry ; 20(51): 17185-97, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25348903

ABSTRACT

The trivalent metal cations Al(3+) , Cr(3+) , and Fe(3+) were each introduced, together with Sc(3+) , into MIL-100(Sc,M) solid solutions (M=Al, Cr, Fe) by direct synthesis. The substitution has been confirmed by powder X-ray diffraction (PXRD) and solid-state NMR, UV/Vis, and X-ray absorption (XAS) spectroscopy. Mixed Sc/Fe MIL-100 samples were prepared in which part of the Fe is present as α-Fe2 O3 nanoparticles within the mesoporous cages of the MOF, as shown by XAS, TGA, and PXRD. The catalytic activity of the mixed-metal catalysts in Lewis acid catalysed Friedel-Crafts additions increases with the amount of Sc present, with the attenuating effect of the second metal decreasing in the order Al>Fe>Cr. Mixed-metal Sc,Fe materials give acceptable activity: 40 % Fe incorporation only results in a 20 % decrease in activity over the same reaction time and pure product can still be obtained and filtered off after extended reaction times. Supported α-Fe2 O3 nanoparticles were also active Lewis acid species, although less active than Sc(3+) in trimer sites. The incorporation of Fe(3+) into MIL-100(Sc) imparts activity for oxidation catalysis and tandem catalytic processes (Lewis acid+oxidation) that make use of both catalytically active framework Sc(3+) and Fe(3+) . A procedure for using these mixed-metal heterogeneous catalysts has been developed for making ketones from (hetero)aromatics and a hemiacetal.

10.
Angew Chem Int Ed Engl ; 53(48): 13210-4, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25284344

ABSTRACT

Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings.

11.
Phys Chem Chem Phys ; 16(18): 8223-42, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24675798

ABSTRACT

Microporous materials, having pores and channels on the same size scale as small to medium molecules, have found many important applications in current technologies, including catalysis, gas separation and drug storage and delivery. Many of their properties and functions are related to their detailed local structure, such as the type and distribution of active sites within the pores, and the specific structures of these active sites. Solid-state NMR spectroscopy has a strong track record of providing the requisite detailed atomic-level insight into the structures of microporous materials, in addition to being able to probe dynamic processes occurring on timescales spanning many orders of magnitude (i.e., from s to ps). In this Perspective, we provide a brief review of some of the basic experimental approaches used in solid-state NMR spectroscopy of microporous materials, and then discuss some more recent advances in this field, particularly those applied to the study of crystalline materials such as zeolites and metal-organic frameworks. These advances include improved software for aiding spectral interpretation, the development of the NMR-crystallography approach to structure determination, new routes for the synthesis of isotopically-labelled materials, methods for the characterisation of host-guest interactions, and methodologies suitable for observing NMR spectra of paramagnetic microporous materials. Finally, we discuss possible future directions, which we believe will have the greatest impact on the field over the coming years.

12.
Nat Chem ; 5(7): 628-33, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23787755

ABSTRACT

The properties of zeolites, and thus their suitability for different applications, are intimately connected with their structures. Synthesizing specific architectures is therefore important, but has remained challenging. Here we report a top-down strategy that involves the disassembly of a parent zeolite, UTL, and its reassembly into two zeolites with targeted topologies, IPC-2 and IPC-4. The three zeolites are closely related as they adopt the same layered structure, and they differ only in how the layers are connected. Choosing different linkers gives rise to different pore sizes, enabling the synthesis of materials with predetermined pore architectures. The structures of the resulting zeolites were characterized by interpreting the X-ray powder-diffraction patterns through models using computational methods; IPC-2 exhibits orthogonal 12- and ten-ring channels, and IPC-4 is a more complex zeolite that comprises orthogonal ten- and eight-ring channels. We describe how this method enables the preparation of functional materials and discuss its potential for targeting other new zeolites.


Subject(s)
Zeolites/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Powder Diffraction
13.
Dalton Trans ; 41(14): 3937-41, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22086355

ABSTRACT

The scandium analogue of the flexible terephthalate MIL-53 yields a novel closed pore structure upon removal of guest molecules which has unusual thermal behaviour and stepwise opening during CO(2) adsorption. By contrast, the nitro-functionalised MIL-53(Sc) cannot fully close and the structure possesses permanent porosity for CO(2).

14.
Inorg Chem ; 50(21): 10844-58, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21958382

ABSTRACT

The crystal structure of the small pore scandium terephthalate Sc(2)(O(2)CC(6)H(4)CO(2))(3) (hereafter Sc(2)BDC(3), BDC = 1,4-benzenedicarboxylate) has been investigated as a function of temperature and of functionalization, and its performance as an adsorbent for CO(2) has been examined. The structure of Sc(2)BDC(3) has been followed in vacuo over the temperature range 140 to 523 K by high resolution synchrotron X-ray powder diffraction, revealing a phase change at 225 K from monoclinic C2/c (low temperature) to Fddd (high temperature). The orthorhombic form shows negative thermal expansivity of 2.4 × 10(-5) K(-1): Rietveld analysis shows that this results largely from a decrease in the c axis, which is caused by carboxylate group rotation. (2)H wide-line and MAS NMR of deuterated Sc(2)BDC(3) indicates reorientation of phenyl groups via π flips at temperatures above 298 K. The same framework solid has also been prepared using monofunctionalized terephthalate linkers containing -NH(2) and -NO(2) groups. The structure of Sc(2)(NH(2)-BDC)(3) has been determined by Rietveld analysis of synchrotron powder diffraction at 100 and 298 K and found to be orthorhombic at both temperatures, whereas the structure of Sc(2)(NO(2)-BDC)(3) has been determined by single crystal diffraction at 298 K and Rietveld analysis of synchrotron powder diffraction at 100, 298, 373, and 473 K and is found to be monoclinic at all temperatures. Partial ordering of functional groups is observed in each structure. CO(2) adsorption at 196 and 273 K indicates that whereas Sc(2)BDC(3) has the largest capacity, Sc(2)(NH(2)-BDC)(3) shows the highest uptake at low partial pressure because of strong -NH(2)···CO(2) interactions. Remarkably, Sc(2)(NO(2)-BDC)(3) adsorbs 2.6 mmol CO(2) g(-1) at 196 K (P/P(0) = 0.5), suggesting that the -NO(2) groups are able to rotate to allow CO(2) molecules to diffuse along the narrow channels.

SELECTION OF CITATIONS
SEARCH DETAIL
...