Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 12(9): e0183480, 2017.
Article in English | MEDLINE | ID: mdl-28877184

ABSTRACT

The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment.


Subject(s)
Gene Expression Regulation , Multiplex Polymerase Chain Reaction/methods , RNA/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Spacecraft , Weightlessness , Animals , Escherichia coli/genetics , Freeze Drying , Liver/metabolism , Mice , RNA/genetics , Reproducibility of Results
3.
Clin Chem ; 51(1): 27-34, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15514096

ABSTRACT

BACKGROUND: The Pap smear is currently the most widely used method of screening for squamous cell carcinoma of the cervix (SCCC). Because it is based on cell morphology, it is subject to variability in interpretation. Sensitive molecular markers capable of differentiating cancerous samples from noncancerous ones would be beneficial in this regard. METHODS: We performed representational difference analysis (RDA) using paired, noncancerous (normal) and cancerous (disease) tissues taken from the same specimen obtained from a single patient with a confirmed diagnosis of SCCC. Linearly amplified cDNA from normal and diseased tissues of the original patient and seven others were hybridized to DNA macroarrays containing the candidate gene transcript fragments. Real-time quantitative reverse transcription-PCR was used to validate the macroarray results. RESULTS: RDA identified a candidate pool of 65 transcript fragments up-regulated in diseased tissue compared with normal tissue. Forty-one transcripts were found to be up-regulated in diseased compared with normal tissue in at least one half the patients by macroarray hybridization. Eleven of those genes were selected for real-time quantitative reverse transcription-PCR analysis, and all were confirmed as transcriptionally up-regulated in cancer compared with normal tissue in at least one half the patients. CONCLUSIONS: RDA using tissues from a single patient identified gene fragments confirmed to be transcriptionally up-regulated in SCCC both in the original patient and in seven others. The confirmed genes have a variety of functions and also have the potential to serve as diagnostic or prognostic markers.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Cervix Uteri/metabolism , Gene Expression Profiling , Uterine Cervical Neoplasms/metabolism , Female , Humans , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL