Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36233006

ABSTRACT

Age-related macular degeneration (AMD) is an irreversible chronic degenerative pathology that affects the retina. Despite therapeutic advances thanks to the use of anti-vascular endothelial growth factor (VEGF) agents, resistance mechanisms have been found to accentuate the visual deficit. In the present study, we explored whether a nutraceutical formulation composed of omega-3 fatty acids and resveratrol, called Resvega®, was able to disrupt VEGF-A secretion in human ARPE-19 retina cells. We found that Resvega® inhibits VEGF-A secretion through decreases in both the PI3K-AKT-mTOR and NFκB signaling pathways. In NFκB signaling pathways, Resvega® inhibits the phosphorylation of the inhibitor of NFκB, IκB, which can bind NFκB dimers and sequester them in the cytoplasm. Thus, the NFκB subunits cannot migrate to the nucleus where they normally bind and stimulate the transcription of target genes such as VEGF-A. The IκB kinase complex (IKK) is also affected by Resvega® since the nutraceutical formulation decreases both IKKα and IKKß subunits and the IKKγ subunit which is required for the stimulation of IKK. Very interestingly, we highlight that Resvega® could prolong the anti-angiogenic effect of Avastin®, which is an anti-VEGF agent typically used in clinical practice. Our results suggest that Resvega® may have potential interest as nutritional supplementation against AMD.


Subject(s)
Fatty Acids, Omega-3 , Macular Degeneration , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Dietary Supplements , Endothelial Growth Factors , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Humans , I-kappa B Kinase , Macular Degeneration/drug therapy , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Resveratrol/therapeutic use , Retina/metabolism , TOR Serine-Threonine Kinases , Vascular Endothelial Growth Factor A/metabolism
2.
Int J Mol Sci ; 22(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34445170

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly aggressive disease with invasive and metastasizing properties associated with a poor prognosis. The STAT3 signaling pathway has shown a pivotal role in cancer cell migration, invasion, metastasis and drug resistance of TNBC cells. IL-6 is a main upstream activator of the JAK2/STAT3 pathway. In the present study we examined the impact of the NO-donor glyceryl trinitrate (GTN) on the activation of the JAK2/STAT3 signaling pathway and subsequent migration, invasion and metastasis ability of TNBC cells through in vitro and in vivo experiments. We used a subtoxic dose of carboplatin and/or recombinant IL-6 to activate the JAK2/STAT3 signaling pathway and its functional outcomes. We found an inhibitory effect of GTN on the activation of the JAK2/STAT3 signaling, migration and invasion of TNBC cells. We discovered that GTN inhibits the activation of JAK2, the upstream activator of STAT3, and mediates the S-nitrosylation of JAK2. Finally, the effect of GTN (Nitronal) on lung metastasis was investigated to assess its antitumor activity in vivo.


Subject(s)
Janus Kinase 2/metabolism , Nitric Oxide Donors/pharmacology , Nitroglycerin/pharmacology , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/drug therapy , Animals , Cell Line, Tumor , Cell Movement/drug effects , Female , Humans , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness/prevention & control , Nitric Oxide Donors/therapeutic use , Nitroglycerin/therapeutic use , Triple Negative Breast Neoplasms/metabolism
3.
J Steroid Biochem Mol Biol ; 210: 105870, 2021 06.
Article in English | MEDLINE | ID: mdl-33684483

ABSTRACT

Multiple sclerosis is an autoimmune disease that affects the central nervous system. Dysfunction of the immune system leads to lesions that cause motor, sensory, cognitive, visual and/or sphincter disturbances. In the long term, these disorders can progress towards an irreversible handicap. The diagnosis takes time because there are no specific criteria to diagnose multiple sclerosis. To realize the diagnosis, a combination of clinical, biological, and radiological arguments is therefore required. Hence, there is a need to identify multiple sclerosis biomarkers. Some biomarkers target immunity through the detection of oligoclonal bands, the measurement of the IgG index and cytokines. During the physiopathological process, the blood-brain barrier can be broken, and this event can be identified by measuring metalloproteinase activity and diffusion of gadolinium in the brain by magnetic resonance imaging. Markers of demyelination and of astrocyte and microglial activity may also be of interest as well as markers of neuronal damage and mitochondrial status. The measurement of different lipids in the plasma and cerebrospinal fluid can also provide suitable information. These different lipids include fatty acids, fatty acid peroxidation products, phospholipids as well as oxidized derivatives of cholesterol (oxysterols). Oxysterols could constitute new biomarkers providing information on the form of multiple sclerosis, the outcome of the disease and the answer to treatment.


Subject(s)
Biomarkers/analysis , Lipids/analysis , Multiple Sclerosis/physiopathology , Oxysterols/metabolism , Biomarkers/metabolism , Blood-Brain Barrier/physiopathology , Fatty Acids/metabolism , Humans , Immunoglobulin G/blood , Lipids/blood , Lipids/cerebrospinal fluid , Multiple Sclerosis/therapy , Myelin Sheath/metabolism
4.
J Steroid Biochem Mol Biol ; 194: 105432, 2019 11.
Article in English | MEDLINE | ID: mdl-31344443

ABSTRACT

Oxidative stress and mitochondrial dysfunction contribute to the pathogenesis of neurodegenerative diseases and favor lipid peroxidation, leading to increased levels of 7ß-hydroxycholesterol (7ß-OHC) which induces oxiapoptophagy (OXIdative stress, APOPTOsis, autoPHAGY). The cytoprotective effects of dimethylfumarate (DMF), used in the treatment of relapsing remitting multiple sclerosis and of monomethylfumarate (MMF), its main metabolite, were evaluated on murine oligodendrocytes 158 N exposed to 7ß-OHC (50 µM, 24 h) with or without DMF or MMF (25 µM). The activity of 7ß-OHC in the presence or absence DMF or MMF was evaluated on several parameters: cell adhesion; plasma membrane integrity measured with propidium iodide (PI), trypan blue and fluoresceine diacetate (FDA) assays; LDH activity; antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)); generation of lipid peroxidation products (malondialdehyde (MDA), conjugated dienes (CDs)) and protein oxidation products (carbonylated proteins (CPs)); reactive oxygen species (ROS) overproduction conducted with DHE and DHR123. The effect on mitochondria was determined with complementary criteria: measurement of succinate dehydrogenase activity, evaluation of mitochondrial potential (ΔΨm) and mitochondrial superoxide anions (O2●-) production using DiOC6(3) and MitoSOX, respectively; quantification of mitochondrial mass with Mitotracker Red, and of cardiolipins and organic acids. The effects on mitochondrial and peroxisomal ultrastructure were determined by transmission electron microscopy. Intracellular sterol and fatty acid profiles were determined. Apoptosis and autophagy were characterized by staining with Hoechst 33,342, Giemsa and acridine orange, and with antibodies raised against caspase-3 and LC3. DMF and MMF attenuate 7ß-OHC-induced cytotoxicity: cell growth inhibition; decreased cell viability; mitochondrial dysfunction (decrease of succinate dehydrogenase activity, loss of ΔΨm, increase of mitochondrial O2●- production, alteration of the tricarboxilic acid (TCA) cycle, and cardiolipins content); oxidative stress induction (ROS overproduction, alteration of GPx, CAT, and SOD activities, increased levels of MDA, CDs, and CPs); changes in fatty acid and cholesterol metabolism; and cell death induction (caspase-3 cleavage, activation of LC3-I in LC3-II). Ultrastructural alterations of mitochondria and peroxisomes were prevented. These results demonstrate that DMF and MMF prevent major dysfunctions associated with neurodegenerative diseases: oxidative stress, mitochondrial dysfunction, apoptosis and autophagy.


Subject(s)
Dimethyl Fumarate/pharmacology , Fumarates/pharmacology , Maleates/pharmacology , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Line , Cholesterol/metabolism , Hydroxycholesterols/pharmacology , Lipid Peroxidation/drug effects , Mice , Mitochondria/metabolism , Mitochondria/physiology , Mitochondria/ultrastructure , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Oxidative Stress/drug effects
5.
Biomed Environ Sci ; 32(4): 291-299, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31217065

ABSTRACT

OBJECTIVE: Age-related diseases, including neurodegenerative diseases, are associated with oxidative stress and lipid peroxidation, and increase the levels of cholesterol auto-oxidation products such as 7ß-hydroxycholesterol (7ß-OHC). Thus, it is imperative to identify agents that can prevent 7ß-OHC-induced side-effects. METHODS: We evaluated the potential protective effects of Carpobrotus edulis ethanol-water extract (EWe) on murine oligodendrocytes (158N) cultured in the absence or presence of 7ß-OHC (20 µg/mL, 24 h). The cells were incubated with EWe (20-200 µg/mL) 2 h before 7ß-OHC treatment. Mitochondrial activity and cell growth were evaluated with the MTT assay. Photometric methods were used to analyze antioxidant enzyme [catalase (CAT) and glutathione peroxidase (GPx)] activities and the generation of lipid and protein oxidation products [malondialdehyde (MDA), conjugated diene (CD), and carbonylated proteins (CPs)]. RESULTS: Treatment with 7ß-OHC induced cell death and oxidative stress (reflected by alteration in CAT and SOD activities). Overproduction of lipid peroxidation products (MDA and CDs) and CPs was also reported. The cytotoxic effects associated with 7ß-OHC were attenuated by 160 µg/mL of EWe of C. edulis. Cell death induced by 7ß-OHC treatment was ameliorated, GPx and CAT activities were restored to normal, and MDA, CD, and CP levels were reduced following C. edulis extract treatment. CONCLUSION: These data demonstrate the protective activities of C. edulis EWe against 7ß-OHC-induced disequilibrium in the redox status of 158N cells, indicative of the potential role of this plant extract in the prevention of neurodegenerative diseases.


Subject(s)
Aizoaceae , Neurodegenerative Diseases/prevention & control , Oligodendroglia/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Animals , Cell Line , Drug Evaluation, Preclinical , Hydroxycholesterols , Mice , Neuroprotection , Oligodendroglia/metabolism , Phytotherapy , Plant Extracts/therapeutic use
6.
Free Radic Res ; 53(5): 535-561, 2019 05.
Article in English | MEDLINE | ID: mdl-31039616

ABSTRACT

Mitochondrial dysfunction and oxidative stress are involved in neurodegenerative diseases associated with an enhancement of lipid peroxidation products such as 7ß-hydroxycholesterol (7ß-OHC). It is, therefore, important to study the ability of 7ß-OHC to trigger mitochondrial defects, oxidative stress, metabolic dysfunctions and cell death, which are hallmarks of neurodegeneration, and to identify cytoprotective molecules. The effects of biotin were evaluated on 158N murine oligodendrocytes, which are myelin synthesizing cells, exposed to 7ß-OHC (50 µM) with or without biotin (10 and 100 nM) or α-tocopherol (positive control of cytoprotection). The effects of biotin on 7ß-OHC activities were determined using different criteria: cell adhesion; plasma membrane integrity; redox status. The impact on mitochondria was characterized by the measurement of transmembrane mitochondrial potential (ΔΨm), reactive oxygen species (ROS) overproduction, mitochondrial mass, quantification of cardiolipins and organic acids. Sterols and fatty acids were also quantified. Cell death (apoptosis, autophagy) was characterized by the enumeration of apoptotic cells, caspase-3 activation, identification of autophagic vesicles, and activation of LC3-I into LC3-II. Biotin attenuates 7ß-OHC-induced cytotoxicity: loss of cell adhesion was reduced; antioxidant activities were normalized. ROS overproduction, protein and lipid oxidation products were decreased. Biotin partially restores mitochondrial functions: attenuation of the loss of ΔΨm; reduced levels of mitochondrial O2•- overproduction; normalization of cardiolipins and organic acid levels. Biotin also normalizes cholesterol and fatty acid synthesis, and prevents apoptosis and autophagy (oxiapoptophagy). Our data support that biotin, which prevents oligodendrocytes damages, could be useful in the treatment of neurodegeneration and demyelination.


Subject(s)
Antioxidants/pharmacology , Biotin/pharmacology , Hydroxycholesterols/antagonists & inhibitors , Lipid Metabolism/drug effects , Mitochondria/drug effects , alpha-Tocopherol/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Caspase 3/genetics , Caspase 3/metabolism , Catalase/genetics , Catalase/metabolism , Cell Adhesion/drug effects , Cell Line , Fatty Acids/biosynthesis , Gene Expression Regulation , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Hydroxycholesterols/pharmacology , Lipid Metabolism/genetics , Lipid Peroxidation/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/metabolism , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
7.
Crit Rev Food Sci Nutr ; 59(19): 3179-3198, 2019.
Article in English | MEDLINE | ID: mdl-29993272

ABSTRACT

Cholesterol oxidation products, also named oxysterols, can be formed either by cholesterol auto-oxidation, enzymatically or both. Among these oxysterols, 7-ketocholesterol (7KC) is mainly formed during radical attacks that take place on the carbon 7 of cholesterol. As increased levels of 7KC have been found in the tissues, plasma and/or cerebrospinal fluid of patients with major diseases, especially age-related diseases (cardiovascular diseases, eye diseases, neurodegenerative diseases), some cancers, and chronic inflammatory diseases, it is suspected that 7KC, could contribute to their development. Since 7KC, provided by the diet or endogenously formed, is not or little efficiently metabolized, except in hepatic cells, its cellular accumulation can trigger numerous side effects including oxidative stress, inflammation and cell death. To counteract 7KC-induced side effects, it is necessary to characterize the metabolic pathways activated by this oxysterol to identify potential targets for cytoprotection and geroprotection. Currently, several natural compounds (tocopherols, fatty acids, polyphenols, etc) or mixtures of compounds (oils) used in traditional medicine are able to inhibit the deleterious effects of 7KC. The different molecules identified could be valued in different ways (functional foods, recombinant molecules, theranostic) to prevent or treat diseases associated with 7KC.


Subject(s)
Ketocholesterols/adverse effects , Noncommunicable Diseases/prevention & control , Antioxidants/pharmacology , Fatty Acids/pharmacology , Humans , Inflammation/prevention & control , Oxidation-Reduction , Oxidative Stress , Polyphenols/pharmacology , Tocopherols/pharmacology
8.
Biochimie ; 153: 181-202, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30031877

ABSTRACT

The involvement of organelles in cell death is well established especially for endoplasmic reticulum, lysosomes and mitochondria. However, the role of the peroxisome is not well known, though peroxisomal dysfunction favors a rupture of redox equilibrium. To study the role of peroxisomes in cell death, 158 N murine oligodendrocytes were treated with 7-ketocholesterol (7 KC: 25-50 µM, 24 h). The highest concentration is known to induce oxiapoptophagy (OXIdative stress + APOPTOsis + autoPHAGY), whereas the lowest concentration does not induce cell death. In those conditions (with 7 KC: 50 µM) morphological, topographical and functional peroxisome alterations associated with modifications of the cytoplasmic distribution of mitochondria, with mitochondrial dysfunction (loss of transmembrane mitochondrial potential, decreased level of cardiolipins) and oxidative stress were observed: presence of peroxisomes with abnormal sizes and shapes similar to those observed in Zellweger fibroblasts, lower cellular level of ABCD3, used as a marker of peroxisomal mass, measured by flow cytometry, lower mRNA and protein levels (measured by RT-qPCR and western blotting) of ABCD1 and ABCD3 (two ATP-dependent peroxisomal transporters), and of ACOX1 and MFP2 enzymes, and lower mRNA level of DHAPAT, involved in peroxisomal ß-oxidation and plasmalogen synthesis, respectively, and increased levels of very long chain fatty acids (VLCFA: C24:0, C24:1, C26:0 and C26:1, quantified by gas chromatography coupled with mass spectrometry) metabolized by peroxisomal ß-oxidation. In the presence of 7 KC (25 µM), slight mitochondrial dysfunction and oxidative stress were found, and no induction of apoptosis was detected; however, modifications of the cytoplasmic distribution of mitochondria and clusters of mitochondria were detected. The peroxisomal alterations observed with 7 KC (25 µM) were similar to those with 7 KC (50 µM). In addition, data obtained by transmission electron microcopy and immunofluorescence microscopy by dual staining with antibodies raised against p62, involved in autophagy, and ABCD3, support that 7 KC (25-50 µM) induces pexophagy. 7 KC (25-50 µM)-induced side effects were attenuated by α-tocopherol but not by α-tocotrienol, whereas the anti-oxidant properties of these molecules determined with the FRAP assay were in the same range. These data provide evidences that 7 KC, at concentrations inducing or not cell death, triggers morphological, topographical and functional peroxisomal alterations associated with minor or major mitochondrial changes.


Subject(s)
Ketocholesterols/pharmacology , Oligodendroglia/drug effects , Peroxisomes/drug effects , alpha-Tocopherol/pharmacology , Animals , Apoptosis/drug effects , Dose-Response Relationship, Drug , Fatty Acids/metabolism , Fibroblasts/pathology , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Membrane Proteins/metabolism , Mice , Mitochondria/drug effects , Peroxisomes/metabolism , Plasmalogens/metabolism , Tocotrienols/pharmacology , Zellweger Syndrome/pathology
9.
Biochimie ; 153: 210-219, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30003930

ABSTRACT

Some oxysterols resulting either from enzymatic oxidation or autoxidation of cholesterol are associated with age-related diseases including neurodegenerative diseases. Among these oxysterols, 7ß-hydroxycholesterol (7ß-OHC) is often found at increased levels in patients. It is therefore important to identify molecules or mixtures of molecules to prevent 7ß-OHC-induced side effects. Consequently, murine oligodendrocytes (158N) were cultured in the absence or presence of 7ß-OHC (20 µg/mL, 24 h) with or without a natural oil extracted from sea urchin (Paracentrotus lividus) eggs known for its biological activity. Firstly, the chemical composition of this oil was determined using 31P NMR and GC-MS. Secondly, this oil was used to reduce 7ß-OHC-induced side effects. To this end, the oil (160 µg/mL) was added to the culture medium of 158N cells 2 h before 7ß-OHC. The effects of 7ß-OHC with or without the oil on cell viability were studied with the MTT test. Photometric methods were used to analyze antioxidant enzyme activities, superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as the generation of lipid peroxidation products (malondialdehyde (MDA), conjugated dienes (CDs)) and protein oxidation product (carbonylated proteins (CPs)). Gas chromatography was used to determine the fatty acid profile. With 7ß-OHC, an induction of cell death associated with oxidative stress (alteration of GPx and SOD activities) was observed; an overproduction of lipid peroxidation products (MDA and CDs) and CPs was also revealed. Sea urchin egg oil attenuated 7ß-OHC-induced cytotoxicity: 7ß-OHC-induced cell death was reduced, GPx and SOD activities were normalized, and lower levels of MDA, CDs and CPs were produced. In addition, whereas a disturbed fatty acid profile was observed with 7ß-OHC, similar fatty acid profiles were found in control cells and in cells cultured with 7ß-OHC associated with sea urchin egg oil. These data demonstrate the protective activities of sea urchin egg oil against 7ß-OHC-induced side effects on 158N cells, supporting the concept that this oil may have benefits in the prevention of neurodegenerative diseases.


Subject(s)
Cell Death/drug effects , Fatty Acids/metabolism , Hydroxycholesterols/pharmacology , Oils/pharmacology , Ovum/metabolism , Oxidative Stress/drug effects , Animals , Gas Chromatography-Mass Spectrometry , Glutathione Peroxidase/metabolism , Lipid Peroxidation/drug effects , Magnetic Resonance Spectroscopy , Sea Urchins , Superoxide Dismutase/metabolism
10.
Biochimie ; 153: 46-51, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29684511

ABSTRACT

The propagation of nerve impulses in myelinated nerve fibers depends on a number of factors involving the myelin and neural axons. In several neurodegenerative diseases, nerve impulses can be affected by the structural and biochemical characteristics of the myelin sheath and the activity of ion channels located in the nodes of Ranvier. Though it is generally accepted that lipid disorders are involved in the development of neurodegenerative diseases, little is known about their impact on nerve impulses. Cholesterol oxide derivatives (also called oxysterols), which are either formed enzymatically or as a result of cholesterol auto-oxidation or both, are often found in abnormal levels in the brain and body fluids of patients with neurodegenerative diseases. This leads to the question of whether these molecules, which can accumulate in the plasma membrane and influence its structure and functions (fluidity, membrane proteins activities, signaling pathways), can have an impact on nerve impulses. It is currently thought that the ability of oxysterols to modulate nerve impulses could be explained by their influence on the characteristics and production of myelin as well as the functionality of Na+ and K+ channels.


Subject(s)
Action Potentials , Nerve Fibers/drug effects , Oxysterols/metabolism , Animals , Myelin Sheath/metabolism , Potassium Channels/metabolism , Sodium Channels/metabolism
11.
Int J Mol Sci ; 18(10)2017 Oct 23.
Article in English | MEDLINE | ID: mdl-29065513

ABSTRACT

Argan oil is widely used in Morocco in traditional medicine. Its ability to treat cardiovascular diseases is well-established. However, nothing is known about its effects on neurodegenerative diseases, which are often associated with increased oxidative stress leading to lipid peroxidation and the formation of 7-ketocholesterol (7KC) resulting from cholesterol auto-oxidation. As 7KC induces oxidative stress, inflammation and cell death, it is important to identify compounds able to impair its harmful effects. These compounds may be either natural or synthetic molecules or mixtures of molecules such as oils. In this context: (i) the lipid profiles of dietary argan oils from Berkane and Agadir (Morocco) in fatty acids, phytosterols, tocopherols and polyphenols were determined by different chromatographic techniques; and (ii) their anti-oxidant and cytoprotective effects in 158N murine oligodendrocytes cultured with 7KC (25-50 µM; 24 h) without and with argan oil (0.1% v/v) or α-tocopherol (400 µM, positive control) were evaluated with complementary techniques of cellular and molecular biology. Among the unsaturated fatty acids present in argan oils, oleate (C18:1 n-9) and linoleate (C18:1 n-6) were the most abundant; the highest quantities of saturated fatty acids were palmitate (C16:0) and stearate (C18:0). Several phytosterols were found, mainly schottenol and spinasterol (specific to argan oil), cycloartenol, ß-amyrin and citrostadienol. α- and γ-tocopherols were also present. Tyrosol and protocatechic acid were the only polyphenols detected. Argan and extra virgin olive oils have many compounds in common, principally oleate and linoleate, and tocopherols. Kit Radicaux Libres (KRL) and ferric reducing antioxidant power (FRAP) tests showed that argan and extra virgin olive oils have anti-oxidant properties. Argan oils were able to attenuate the cytotoxic effects of 7KC on 158N cells: loss of cell adhesion, cell growth inhibition, increased plasma membrane permeability, mitochondrial, peroxisomal and lysosomal dysfunction, and the induction of oxiapoptophagy (OXIdation + APOPTOsis + autoPHAGY). Altogether, our data obtained in 158N oligodendrocytes provide evidence that argan oil is able to counteract the toxic effects of 7KC on nerve cells, thus suggesting that some of its compounds could prevent or mitigate neurodegenerative diseases to the extent that they are able to cross the blood-brain barrier.


Subject(s)
Ketocholesterols/toxicity , Neuroprotective Agents/pharmacology , Oligodendroglia/drug effects , Plant Oils/pharmacology , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Line , Lipid Peroxidation , Lysosomes/drug effects , Mice , Mitochondria/drug effects , Oxidative Stress/drug effects , Peroxisomes/drug effects , alpha-Tocopherol/pharmacology
12.
Chem Phys Lipids ; 207(Pt B): 151-170, 2017 10.
Article in English | MEDLINE | ID: mdl-28408132

ABSTRACT

Increased levels of 7-ketocholesterol (7KC), which results mainly from cholesterol auto-oxidation, are often found in the plasma and/or cerebrospinal fluid of patients with neurodegenerative diseases and might contribute to activation of microglial cells involved in neurodegeneration. As major cellular dysfunctions are induced by 7KC, it is important to identify molecules able to impair its side effects. Since consumption of olive and argan oils, and fish is important in the Mediterranean diet, the aim of the study was to determine the ability of oleic acid (OA), a major compound of olive and argan oil, and docosahexaenoic acid (DHA) present in fatty fishes, such as sardines, to attenuate 7KC-induced cytotoxic effects. Since elaidic acid (EA), the trans isomer of OA, can be found in hydrogenated cooking oils and fried foods, its effects on 7KC-induced cytotoxicity were also determined. In murine microglial BV-2 cells, 7KC induces cell growth inhibition, mitochondrial dysfunctions, reactive oxygen species overproduction and lipid peroxidation, increased plasma membrane permeability and fluidity, nuclei condensation and/or fragmentation and caspase-3 activation, which are apoptotic characteristics, and an increased LC3-II/LC3-I ratio, which is a criterion of autophagy. 7KC is therefore a potent inducer of oxiapoptophagy (OXIdation+APOPTOsis+autoPHAGY) on BV-2 cells. OA and EA, but not DHA, also favor the accumulation of lipid droplets revealed with Masson's trichrome, Oil Red O, and Nile Red staining. The cytotoxicity of 7KC was strongly attenuated by OA and DHA. Protective effects were also observed with EA. However, 7KC-induced caspase-3 activation was less attenuated with EA. Different effects of OA and EA on autophagy were also observed. In addition, EA (but not OA) increased plasma membrane fluidity, and only OA (but not EA) was able to prevent the 7KC-induced increase in plasma membrane fluidity. Thus, in BV-2 microglial cells, the principal fatty acids of the Mediterranean diet (OA, DHA) were able to attenuate the major toxic effects of 7KC, thus reinforcing the interest of natural compounds present in the Mediterranean diet to prevent the development of neurodegenerative diseases.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Diet, Mediterranean , Fatty Acids/pharmacology , Ketocholesterols/antagonists & inhibitors , Microglia/cytology , Microglia/drug effects , Animals , Cell Count , Cell Line , Cell Proliferation/drug effects , Docosahexaenoic Acids/pharmacology , Dose-Response Relationship, Drug , Ketocholesterols/pharmacology , Mice , Oleic Acid/pharmacology , Oleic Acids , Structure-Activity Relationship
13.
J Steroid Biochem Mol Biol ; 169: 29-38, 2017 05.
Article in English | MEDLINE | ID: mdl-26921765

ABSTRACT

Mitochondrial dysfunctions and oxidative stress are involved in several non demyelinating or demyelinating neurodegenerative diseases. Some of them, including multiple sclerosis (MS), are associated with lipid peroxidation processes leading to increased levels of 7-ketocholesterol (7KC). So, the eventual protective effect of dimethylfumarate (DMF), which is used for the treatment of MS, was evaluated on 7KC-treated oligodendrocytes, which are myelin synthesizing cells. To this end, murine oligodendrocytes 158N were exposed to 7KC (25, 50µM) for 24h without or with DMF (1, 25, 50µM). The biological activities of DMF associated or not with 7KC were evaluated by phase contrast microscopy, crystal violet and MTT tests. The impact on transmembrane mitochondrial potential (ΔYm), O2- and H2O2 production, apoptosis and autophagy was measured by microscopical and flow cytometric methods by staining with DiOC6(3), dihydroethidine and dihydrorhodamine 123, Hoechst 33342, and by Western blotting with the use of specific antibodies raised against uncleaved and cleaved caspase-3 and PARP, and LC3-I/II. DMF attenuates the different effects of 7KC, namely: cell growth inhibition and/or loss of cell adhesion, decrease of ΔΨm, O2- and H2O2 overproduction, PARP and caspase-3 cleavage, nuclear condensation and fragmentation, and activation of LC3-I into LC3-II. The ability of DMF to attenuate 7KC-induced reactive oxygen species overproduction, apoptosis, and autophagy on oligodendrocytes reinforces the interest for this molecule for the treatment of MS or other demyelinating diseases.


Subject(s)
Apoptosis , Autophagy , Dimethyl Fumarate/pharmacology , Ketocholesterols/pharmacology , Oligodendroglia/metabolism , Reactive Oxygen Species/metabolism , Animals , Antioxidants/metabolism , Cell Nucleus/metabolism , Docosahexaenoic Acids/metabolism , Flow Cytometry , Lipid Peroxidation , Membrane Potential, Mitochondrial , Mice , Microscopy, Phase-Contrast , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Oligodendroglia/drug effects , Oxidative Stress
14.
J Steroid Biochem Mol Biol ; 169: 96-110, 2017 05.
Article in English | MEDLINE | ID: mdl-27020660

ABSTRACT

In multiple sclerosis (MS) a process of white matter degradation leading to demyelination is observed. Oxidative stress, inflammation, apoptosis, necrosis and/or autophagy result together into a progressive loss of oligodendrocytes. 7-ketocholesterol (7KC), found increased in the cerebrospinal fluid of MS patients, triggers a rupture of RedOx homeostasis associated with mitochondrial dysfunctions, aptoptosis and autophagy (oxiapoptophagy) in cultured murine oligodendrocytes (158N). α-tocopherol is able to mild the alterations induced by 7KC partially restoring the cellular homeostasis. In presence of 7KC, the amount of adherent 158N cells was decreased and oxidative stress was enhanced. An increase of caspase-3 and PARP degradation (evidences of apoptosis), and an increased LC3-II/LC3-I ratio (criterion of autophagy), were detected. These events were associated with a decrease of the mitochondrial membrane potential (ΔΨm) and by a decrease of oxidative phosphorylation revealed by reduced NAD+ and ATP. The cellular lactate was higher while pyruvate, citrate, fumarate, succinate (tricarboxylic acid (TCA) cycle intermediates) were significantly reduced in exposed cells, suggesting that an impairment of mitochondrial respiratory functions could lead to an increase of lactate production and to a reduced amount of ATP and acetyl-CoA available for the anabolic pathways. The concentration of sterol precursors lathosterol, lanosterol and desmosterol were significantly reduced together with satured and unsatured long chain fatty acids (C16:0 - C18:0, structural elements of membrane phospholipids). Such reductions were milder with α-tocopherol. It is likely that the cell death induced by 7KC is associated with mitochondrial dysfunctions, including alterations of oxidative phosphorylation, which could result from lipid anabolism dysfunctions, especially on TCA cycle intermediates. A better knowledge of mitochondrial associated dysfunctions triggered by 7KC will contribute to bring new information on the demyelination processes which are linked with oxidative stress and lipid peroxidation, especially in MS.


Subject(s)
Cholesterol/chemistry , Citric Acid Cycle , Ketocholesterols/chemistry , Mitochondria/metabolism , Oligodendroglia/metabolism , Oxysterols/chemistry , alpha-Tocopherol/chemistry , Adenosine Triphosphate/chemistry , Animals , Cell Nucleus/metabolism , Fatty Acids, Unsaturated/chemistry , Flow Cytometry , Inflammation , L-Lactate Dehydrogenase/metabolism , Lipid Peroxidation , Lipids/chemistry , Mass Spectrometry , Membrane Potential, Mitochondrial , Mice , Multiple Sclerosis/metabolism , NAD/chemistry , Oligodendroglia/cytology , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism
15.
Int J Mol Sci ; 17(12)2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27897980

ABSTRACT

Lipid peroxidation products, such as 7-ketocholesterol (7KC), may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA). Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal ß-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases.


Subject(s)
Ketocholesterols/pharmacology , Microglia/drug effects , Microglia/metabolism , Mitochondria/drug effects , Oleic Acid/pharmacology , Olive Oil/pharmacology , Peroxisomes/drug effects , alpha-Tocopherol/pharmacology , gamma-Tocopherol/pharmacology , Animals , Antioxidants/pharmacology , Cell Line , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/pathology , Peroxisomes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...