Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 347: 123798, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38492748

ABSTRACT

In the aquatic environment, microplastic particles (MP) can accumulate in microbial communities that cover submerged substrata, i.e. in periphyton. Despite periphyton being the essential food source for grazers in the benthic zones, MP transfer from periphyton to benthic biota and its ecotoxicological consequences are unknown. Therefore, in this study, we investigated the effects of 1) MP on embryonal development of freshwater gastropod Physa acuta embryos, 2) MP on adult Physa acuta individuals through dietary exposure and 3) on the MP surface properties. Embryonal development tests were carried out with spherical polyethylene MP in the size of 1-4 µm (MP). Over a period of 28 days, embryonal development and hatching rate were calculated. In the feeding experiments, periphyton was grown in the presence and absence of MP and was then offered to the adult Physa acuta for 42-152 h. The snails readily ingested and subsequently egested MP, together with the periphyton as shown by MP quantification in periphyton, snail soft body tissue and feces. No selective feeding behavior upon MP exposure was detected. The ingestion of MP had no effect on mortality, feeding and defecation rate. Yet, the reproductive output of snails, measured as the number of egg clutches and numbers of eggs per clutch, decreased after the ingestion of MPs, while the hatching success of snail embryos those parents were exposed remained unaffected. In contrast, hatching rate of snail embryos was significantly reduced upon direct MP exposure. MP optical properties were changed upon the incorporation into the periphyton and the passage through the digestive tract. Our results indicate that MP incorporated in periphyton are bioavailable to aquatic grazers, facilitating the introduction of MP into the food chain and having direct adverse effects on the grazers' reproductive fitness.


Subject(s)
Periphyton , Snails , Water Pollutants, Chemical , Humans , Microplastics , Plastics/toxicity , Fresh Water , Food Chain , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
2.
Front Microbiol ; 9: 2974, 2018.
Article in English | MEDLINE | ID: mdl-30555454

ABSTRACT

Stream biofilms have been shown to be among the most sensitive indicators of environmental stress in aquatic ecosystems and several endpoints have been developed to measure biofilm adverse effects caused by environmental stressors. Here, we compare the effects of long-term exposure of stream biofilms to diuron, a commonly used herbicide, on several traditional ecotoxicological endpoints (biomass growth, photosynthetic efficiency, chlorophyll-a content, and taxonomic composition), with the effects measured by recently developed methods [community structure assessed by flow cytometry (FC-CS) and measurement of extracellular polymeric substances (EPS)]. Biofilms grown from local stream water in recirculating microcosms were exposed to a constant concentration of 20 µg/L diuron over a period of 3 weeks. During the experiment, we observed temporal variation in photosynthetic efficiency, biomass, cell size, presence of decaying cells and in the EPS protein fraction. While biomass growth, photosynthetic efficiency, and chlorophyll-a content were treatment independent, the effects of diuron were detectable with both FC and EPS measurements. This demonstrates that, at least for our experimental setup, a combination of different ecotoxicological endpoints can be important for evaluating biofilm environmental stress and suggests that the more recent ecotoxicological endpoints (FC-CS, EPS protein content and humic substances) can be a useful addition for stream biofilm ecotoxicological assessment.

3.
J Vis Exp ; (136)2018 06 06.
Article in English | MEDLINE | ID: mdl-29939166

ABSTRACT

Biofilms are dynamic consortia of microorganism that play a key role in freshwater ecosystems. By changing their community structure, biofilms respond quickly to environmental changes and can be thus used as indicators of water quality. Currently, biofilm assessment is mostly based on integrative and functional endpoints, such as photosynthetic or respiratory activity, which do not provide information on the biofilm community structure. Flow cytometry and computational visualization offer an alternative, sensitive, and easy-to-use method for assessment of the community composition, particularly of the photoautotrophic part of freshwater biofilms. It requires only basic sample preparation, after which the entire sample is run through the flow cytometer. The single-cell optical and fluorescent information is used for computational visualization and biological interpretation. Its main advantages over other methods are the speed of analysis and the high-information-content nature. Flow cytometry provides information on several cellular and biofilm traits in a single measurement: particle size, density, pigment content, abiotic content in the biofilm, and coarse taxonomic information. However, it does not provide information on biofilm composition on the species level. We see high potential in the use of the method for environmental monitoring of aquatic ecosystems and as an initial biofilm evaluation step that informs downstream detailed investigations by complementary and more detailed methods.


Subject(s)
Biofilms , Environmental Monitoring/methods , Flow Cytometry/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis
4.
Nat Commun ; 7: 11587, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27188265

ABSTRACT

Biofilms serve essential ecosystem functions and are used in different technical applications. Studies from stream ecology and waste-water treatment have shown that biofilm functionality depends to a great extent on community structure. Here we present a fast and easy-to-use method for individual cell-based analysis of stream biofilms, based on stain-free flow cytometry and visualization of the high-dimensional data by viSNE. The method allows the combined assessment of community structure, decay of phototrophic organisms and presence of abiotic particles. In laboratory experiments, it allows quantification of cellular decay and detection of survival of larger cells after temperature stress, while in the field it enables detection of community structure changes that correlate with known environmental drivers (flow conditions, dissolved organic carbon, calcium) and detection of microplastic contamination. The method can potentially be applied to other biofilm types, for example, for inferring community structure for environmental and industrial research and monitoring.


Subject(s)
Biofilms , Plastics/analysis , Rivers/microbiology , Single-Cell Analysis/methods , Flow Cytometry , Microbial Consortia
5.
Environ Sci Pollut Res Int ; 23(5): 4218-34, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26122573

ABSTRACT

Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag(+)) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown. The effects of exposure of periphyton to 2 and 20 µg/L Ag(+) (AgNO3) and AgNP (polyvinylpyrrolidone stabilised) were investigated in artificial indoor streams. The extracellular polymeric substances (EPS) and 3D biofilm structure, biomass, algae species, Ag concentrations in the water phase and bioassociated Ag were analysed. A strong decrease in total Ag was observed within 4 days. Bioassociated Ag was proportional to dissolved Ag indicating a rate limitation by diffusion across the diffusive boundary layer. Two micrograms per liter of AgNO3 or AgNP did not induce significant effects despite detectable bioassociation of Ag. The 20-µg/L AgNO3 affected green algae and diatom communities, biomass and the ratio of polysaccharides to proteins in EPS. The 20-µg/L AgNO3 and AgNP decreased biofilm volume to about 50 %, while the decrease of biomass was lower in 20 µg/L AgNP samples than the 20-µg/L AgNO3 indicating a compaction of the NP-exposed biofilms. Roughness coefficients were lower in 20 µg/L AgNP-treated samples. The more traditional endpoints (biomass and diversity) indicated silver ion concentration-dependent effects, while the newly introduced parameters (3D structure and EPS) indicated both silver ion concentration-dependent effects and effects related to the silver species applied.


Subject(s)
Biopolymers/analysis , Metal Nanoparticles/toxicity , Microbial Consortia/drug effects , Silver/toxicity , Water Microbiology , Water Pollutants, Chemical/toxicity , Biofilms/growth & development , Biomass , Chlorophyta/drug effects , Diatoms/drug effects , Ecosystem , Ions , Silver Nitrate/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...