Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(19): e2321992121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38684000

ABSTRACT

Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.


Subject(s)
DNA , Biopolymers/chemistry , DNA/chemistry , X-Ray Diffraction , Nucleic Acid Conformation , Models, Molecular , Stereoisomerism
2.
Sci Robot ; 8(85): eadf1274, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38055806

ABSTRACT

Nanoscale industrial robots have potential as manufacturing platforms and are capable of automatically performing repetitive tasks to handle and produce nanomaterials with consistent precision and accuracy. We demonstrate a DNA industrial nanorobot that fabricates a three-dimensional (3D), optically active chiral structure from optically inactive parts. By making use of externally controlled temperature and ultraviolet (UV) light, our programmable robot, ~100 nanometers in size, grabs different parts, positions and aligns them so that they can be welded, releases the construct, and returns to its original configuration ready for its next operation. Our robot can also self-replicate its 3D structure and functions, surpassing single-step templating (restricted to two dimensions) by using folding to access the third dimension and more degrees of freedom. Our introduction of multiple-axis precise folding and positioning as a tool/technology for nanomanufacturing will open the door to more complex and useful nano- and microdevices.


Subject(s)
Nanostructures , Robotics , Robotics/methods , DNA/chemistry , Nanostructures/chemistry
3.
J Am Chem Soc ; 145(32): 17945-17953, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37530628

ABSTRACT

Metal-mediated DNA (mmDNA) presents a pathway toward engineering bioinorganic and electronic behavior into DNA devices. Many chemical and biophysical forces drive the programmable chelation of metals between pyrimidine base pairs. Here, we developed a crystallographic method using the three-dimensional (3D) DNA tensegrity triangle motif to capture single- and multi-metal binding modes across granular changes to environmental pH using anomalous scattering. Leveraging this programmable crystal, we determined 28 biomolecular structures to capture mmDNA reactions. We found that silver(I) binds with increasing occupancy in T-T and U-U pairs at elevated pH levels, and we exploited this to capture silver(I) and mercury(II) within the same base pair and to isolate the titration points for homo- and heterometal base pair modes. We additionally determined the structure of a C-C pair with both silver(I) and mercury(II). Finally, we extend our paradigm to capture cadmium(II) in T-T pairs together with mercury(II) at high pH. The precision self-assembly of heterobimetallic DNA chemistry at the sub-nanometer scale will enable atomistic design frameworks for more elaborate mmDNA-based nanodevices and nanotechnologies.


Subject(s)
Mercury , Silver , Base Pairing , Silver/chemistry , DNA/chemistry , Mercury/chemistry
4.
Nano Lett ; 23(16): 7593-7598, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37561947

ABSTRACT

The use of DNA triplex association is advantageous for the reconfiguration of dynamic DNA nanostructures through pH alteration and can provide environmental control for both structural changes and molecular signaling. The combination of pH-induced triplex-forming oligonucleotide (TFOs) binding with toehold-mediated strand displacement has recently garnered significant attention in the field of structural DNA nanotechnology. While most previous studies use single-stranded DNA to displace or replace TFOs within the triplex, here we demonstrate that pH alteration allows a DNA duplex, with a toehold assistance, to displace TFOs from the components of another DNA duplex. We examined the dependence of this process on toehold length and show that the pH changes allow for cyclic oscillations between two molecular formations. We implemented the duplex/triplex design onto the surface of 2D DNA origami in the form outlining binary digits 0 or 1 and verified the oscillatory conformational changes between the two formations with atomic force microscopy.


Subject(s)
DNA , Nanostructures , DNA/chemistry , Oligonucleotides/chemistry , DNA, Single-Stranded , Microscopy, Atomic Force , Nucleic Acid Conformation
5.
Adv Mater ; 35(29): e2210938, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37268326

ABSTRACT

DNA double helices containing metal-mediated DNA (mmDNA) base pairs are constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials is impractical without a complete lexical and structural description. Here, the programmability of structural DNA nanotechnology toward its founding mission of self-assembling a diffraction platform for biomolecular structure determination is explored. The tensegrity triangle is employed to build a comprehensive structural library of mmDNA pairs via X-ray diffraction and generalized design rules for mmDNA construction are elucidated. Two binding modes are uncovered: N3-dominant, centrosymmetric pairs and major groove binders driven by 5-position ring modifications. Energy gap calculations show additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates.


Subject(s)
DNA , Metals , Metals/chemistry , DNA/chemistry , Base Pairing , Pyrimidines/chemistry , Nanotechnology , Nucleic Acid Conformation
6.
J Am Chem Soc ; 145(19): 10475-10479, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37134185

ABSTRACT

Biology provides plenty of examples on achieving complicated structures out of minimal numbers of building blocks. In contrast, structural complexity of designed molecular systems is achieved by increasing the numbers of component molecules. In this study, the component DNA strand assembles into a highly complex crystal structure via an unusual path of divergence and convergence. This assembly path suggests a route to minimalists for increasing structural complexity. The original purpose of this study is to engineer DNA crystals with high resolution, which is the primary motivation and a key objective for structural DNA nanotechnology. Despite great efforts in the last 40 years, engineered DNA crystals have not yet consistently reached resolution better than 2.5 Å, limiting their potential uses. Our research has shown that small, symmetrical building blocks generally lead to high resolution crystals. Herein, by following this principle, we report an engineered DNA crystal with unprecedented high resolution (2.17 Å) assembled from one single DNA component: an 8-base-long DNA strand. This system has three unique characteristics: (1) It has a very complex architecture, (2) the same DNA strand forms two different structural motifs, both of which are incorporated into the final crystal, and (3) the component DNA molecule is only an 8-base-long DNA strand, which is, arguably, the smallest DNA motif for DNA nanostructures to date. This high resolution opens the possibility of using these DNA crystals to precisely organize guest molecules at the Å level, which could stimulate a range of new investigations.


Subject(s)
DNA , Nanostructures , DNA/chemistry , Nanostructures/chemistry , Nanotechnology , Nucleotide Motifs , Engineering , Nucleic Acid Conformation
7.
Adv Mater ; 35(33): e2302345, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37220213

ABSTRACT

DNA self-assembly computation is attractive for its potential to perform massively parallel information processing at the molecular level while at the same time maintaining its natural biocompatibility. It has been extensively studied at the individual molecule level, but not as much as ensembles in 3D. Here, the feasibility of implementing logic gates, the basic computation operations, in large ensembles: macroscopic, engineered 3D DNA crystals is demonstrated. The building blocks are the recently developed DNA double crossover-like (DXL) motifs. They can associate with each other via sticky-end cohesion. Common logic gates are realized by encoding the inputs within the sticky ends of the motifs. The outputs are demonstrated through the formation of macroscopic crystals that can be easily observed. This study points to a new direction of construction of complex 3D crystal architectures and DNA-based biosensors with easy readouts.


Subject(s)
DNA , Logic , DNA/chemistry , Computers, Molecular
8.
Adv Mater ; : e2201938, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36939292

ABSTRACT

DNA double helices containing metal-mediated DNA (mmDNA) base pairs have been constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials has been impractical without a complete lexical and structural description. Here, we explore the programmability of structural DNA nanotechnology toward its founding mission of self-assembling a diffraction platform for biomolecular structure determination. We employed the tensegrity triangle to build a comprehensive structural library of mmDNA pairs via X-ray diffraction and elucidated generalized design rules for mmDNA construction. We uncovered two binding modes: N3-dominant, centrosymmetric pairs and major groove binders driven by 5-position ring modifications. Energy gap calculations showed additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates. This article is protected by copyright. All rights reserved.

9.
J Am Chem Soc ; 145(8): 4853-4859, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36791277

ABSTRACT

Sequence-selective recognition of DNA duplexes is important for a wide range of applications including regulating gene expression, drug development, and genome editing. Many small molecules can bind DNA duplexes with sequence selectivity. It remains as a challenge how to reliably and conveniently obtain the detailed structural information on DNA-molecule interactions because such information is critically needed for understanding the underlying rules of DNA-molecule interactions. If those rules were understood, we could design molecules to recognize DNA duplexes with a sequence preference and intervene in related biological processes, such as disease treatment. Here, we have demonstrated that DNA crystal engineering is a potential solution. A molecule-binding DNA sequence is engineered to self-assemble into highly ordered DNA crystals. An X-ray crystallographic study of molecule-DNA cocrystals reveals the structural details on how the molecule interacts with the DNA duplex. In this approach, the DNA will serve two functions: (1) being part of the molecule to be studied and (2) forming the crystal lattice. It is conceivable that this method will be a general method for studying drug/peptide-DNA interactions. The resulting DNA crystals may also find use as separation matrices, as hosts for catalysts, and as media for material storage.


Subject(s)
DNA , DNA/chemistry , Crystallography, X-Ray , Nucleic Acid Conformation
10.
J Am Chem Soc ; 145(6): 3599-3605, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36731121

ABSTRACT

Reconfigurable structures engineered through DNA hybridization and self-assembly offer both structural and dynamic applications in nanotechnology. Here, we have demonstrated that strand displacement of triplex-forming oligonucleotides (TFOs) can be translated to a robust macroscopic DNA crystal by coloring the crystals with covalently attached fluorescent dyes. We show that three different types of triplex strand displacement are feasible within the DNA crystals and the bound TFOs can be removed and/or replaced by (a) changing the pH from 5 to 7, (b) the addition of the Watson-Crick complement to a TFO containing a short toehold, and (c) the addition of a longer TFO that uses the duplex edge as a toehold. We have also proved by X-ray diffraction that the structure of the crystals remains as designed in the presence of the TFOs.


Subject(s)
DNA , Oligonucleotides , DNA/chemistry , Oligonucleotides/chemistry , Nucleic Acid Hybridization , Fluorescent Dyes , Nucleic Acid Conformation
11.
J Am Chem Soc ; 145(4): 2455-2460, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36657115

ABSTRACT

Mesojunctions were introduced as a basic type of crossover configuration in the early development of structural DNA nanotechnology. However, the investigations of self-assembly from multiple mesojunction complexes have been overlooked in comparison to their counterparts based on regular junctions. In this work, we designed standardized component strands for the construction of complex mesojunction lattices. Three typical mesojunction configurations with three and four arms were showcased in the self-assembly of 1-, 2-, and 3-dimensional lattices constructed from both a scaffold-free tiling approach and a scaffolded origami approach.


Subject(s)
Nanostructures , Nanostructures/chemistry , Nucleic Acid Conformation , DNA/chemistry , Nanotechnology/methods
12.
Angew Chem Int Ed Engl ; 62(6): e202213451, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36520622

ABSTRACT

Non-canonical interactions in DNA remain under-explored in DNA nanotechnology. Recently, many structures with non-canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non-canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross-talking between Watson-Crick and non-canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long-range geometry of formed crystals from rhombohedral to hexagonal and vice versa. These data demonstrate fine control over non-canonical motifs and their topological self-assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs.


Subject(s)
DNA , Nanotechnology , Nucleic Acid Conformation , Crystallography, X-Ray , DNA/chemistry , Crystallization
13.
Small ; 19(12): e2206511, 2023 03.
Article in English | MEDLINE | ID: mdl-36585389

ABSTRACT

The successful self-assembly of tensegrity triangle DNA crystals heralded the ability to programmably construct macroscopic crystalline nanomaterials from rationally-designed, nanoscale components. This 3D DNA tile owes its "tensegrity" nature to its three rotationally stacked double helices locked together by the tensile winding of a center strand segmented into 7 base pair (bp) inter-junction regions, corresponding to two-thirds of a helical turn of DNA. All reported tensegrity triangles to date have employed ( Z + 2 / 3 ) \[\left( {Z{\bm{ + }}2{\bf /}3} \right)\] turn inter-junction segments, yielding right-handed, antiparallel, "J1" junctions. Here a minimal DNA triangle motif consisting of 3-bp inter-junction segments, or one-third of a helical turn is reported. It is found that the minimal motif exhibits a reversed morphology with a left-handed tertiary structure mediated by a locally-parallel Holliday junction-the "L1" junction. This parallel junction yields a predicted helical groove matching pattern that breaks the pseudosymmetry between tile faces, and the junction morphology further suggests a folding mechanism. A Rule of Thirds by which supramolecular chirality can be programmed through inter-junction DNA segment length is identified. These results underscore the role that global topological forces play in determining local DNA architecture and ultimately point to an under-explored class of self-assembling, chiral nanomaterials for topological processes in biological systems.


Subject(s)
DNA , Nanostructures , Nucleic Acid Conformation , DNA/chemistry , Nanostructures/chemistry , Base Pairing
14.
Small ; 19(3): e2205830, 2023 01.
Article in English | MEDLINE | ID: mdl-36408817

ABSTRACT

The rational design of nanoscopic DNA tiles has yielded highly ordered crystalline matter in 2D and 3D. The most well-studied 3D tile is the DNA tensegrity triangle, which is known to self-assemble into macroscopic crystals. However, contemporary rational design parameters for 3D DNA crystals nearly universally invoke integer numbers of DNA helical turns and Watson-Crick (WC) base pairs. In this study, 24-bp edges are substituted into a previously 21-bp (two helical turns of DNA) tensegrity triangle motif to explore whether such unconventional motif can self-assemble into 3D crystals. The use of noncanonical base pairs in the sticky ends results in a cubic arrangement of tensegrity triangles with exceedingly high symmetry, assembling a lattice from winding helical axes and diamond-like tessellation patterns. Reverting this motif to sticky ends with Watson-Crick pairs results in a trigonal hexagonal arrangement, replicating this diamond arrangement in a hexagonal context. These results showcase that the authors can generate unexpected, highly complex, pathways for materials design by testing modifications to 3D tiles without prior knowledge of the ensuing symmetry. This study expands the rational design toolbox for DNA nanotechnology; and it further illustrates the existence of yet-unexplored arrangements of crystalline soft matter.


Subject(s)
DNA , Nanotechnology , Nucleic Acid Conformation , DNA/chemistry , Base Pairing
15.
Adv Mater ; 34(49): e2206876, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36100349

ABSTRACT

The DNA tensegrity triangle is known to reliably self-assemble into a 3D rhombohedral crystalline lattice via sticky-end cohesion. Here, the library of accessible motifs is expanded through covalent extensions of intertriangle regions and sticky-end-coordinated linkages of adjacent triangles with double helical segments using both geometrically symmetric and asymmetric configurations. The molecular structures of 18 self-assembled architectures at resolutions of 3.32-9.32 Å are reported; the observed cell dimensions, cavity sizes, and cross-sectional areas agree with theoretical expectations. These data demonstrate that fine control over triclinic and rhombohedral crystal parameters and the customizability of more complex 3D DNA lattices are attainable via rational design. It is anticipated that augmented DNA architectures may be fine-tuned for the self-assembly of designer nanocages, guest-host complexes, and proscriptive 3D nanomaterials, as originally envisioned. Finally, designer asymmetric crystalline building blocks can be seen as a first step toward controlling and encoding information in three dimensions.


Subject(s)
DNA
16.
Biophys J ; 121(24): 4759-4765, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36004779

ABSTRACT

In this perspective, we provide a summary of recent developments in self-assembling three-dimensional (3D) DNA crystals. Starting from the inception of this subfield, we describe the various advancements in structure that have led to an increase in the diversity of macromolecular crystal motifs formed through self-assembly, and we further comment on the future directions of the field, which exploit noncanonical base pairing interactions beyond Watson-Crick. We then survey the current applications of self-assembling 3D DNA crystals in reversibly active nanodevices and materials engineering and provide an outlook on the direction researchers are taking these structures. Finally, we compare 3D DNA crystals with DNA origami and suggest how these distinct subfields might work together to enhance biomolecule structure solution, nanotechnological motifs, and their applications.


Subject(s)
DNA , Nanotechnology , Nucleic Acid Conformation , DNA/chemistry , Base Pairing
17.
J Am Chem Soc ; 144(19): 8741-8745, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35507317

ABSTRACT

This manuscript introduces geometry as a means to program the tile-based DNA self-assembly in two and three dimensions. This strategy complements the sequence-focused programmable assembly. DNA crystal assembly critically relies on intermotif, sticky-end cohesion, which requires complementarity not only in sequence but also in geometry. For DNA motifs to assemble into crystals, they must be associated with each other in the proper geometry and orientation to ensure that geometric hindrance does not prevent sticky ends from associating. For DNA motifs with exactly the same pair of sticky-end sequences, by adjusting the length (thus, helical twisting phase) of the motif branches, it is possible to program the assembly of these distinct motifs to either mix with one another, to self-sort and consequently separate from one another, or to be alternatingly arranged. We demonstrate the ability to program homogeneous crystals, DNA "alloy" crystals, and definable grain boundaries through self-assembly. We believe that the integration of this strategy and conventional sequence-focused assembly strategy could further expand the programming versatility of DNA self-assembly.


Subject(s)
DNA , DNA/chemistry , Nucleic Acid Conformation , Nucleotide Motifs
18.
ACS Nano ; 16(1): 1301-1307, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34979076

ABSTRACT

A chiral dimer of an organic semiconductor was assembled from octaniline (octamer of polyaniline) conjugated to DNA. Facile reconfiguration between the monomer and dimer of octaniline-DNA was achieved. The geometry of the dimer and the exciton coupling between octaniline molecules in the assembly was studied both experimentally and theoretically. The octaniline dimer was readily switched between different electronic states by protonic doping and exhibited a Davydov splitting comparable to those previously reported for DNA-dye systems employing dyes with strong transition dipoles. This approach provides a possible platform for studying the fundamental properties of organic semiconductors with DNA-templated assemblies, which serve as candidates for artificial light-harvesting systems and excitonic devices.


Subject(s)
Coloring Agents , DNA , Semiconductors
19.
Angew Chem Int Ed Engl ; 61(5): e202115155, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34847266

ABSTRACT

A quasi-one-dimensional organic semiconductor, hepta(p-phenylene vinylene) (HPV), was incorporated into a DNA tensegrity triangle motif using a covalent strategy. 3D arrays were self-assembled from an HPV-DNA pseudo-rhombohedron edge by rational design and characterized by X-ray diffraction. Templated by the DNA motif, HPV molecules exist as single-molecule fluorescence emitters at the concentration of 8 mM within the crystal lattice. The anisotropic fluorescence emission from HPV-DNA crystals indicates HPV molecules are well aligned in the macroscopic 3D DNA lattices. Sophisticated nanodevices and functional materials constructed from DNA can be developed from this strategy by addressing functional components with molecular accuracy.

20.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: mdl-34873040

ABSTRACT

Artificial self-replication and exponential growth holds the promise of gaining a better understanding of fundamental processes in nature but also of evolving new materials and devices with useful properties. A system of DNA origami dimers has been shown to exhibit exponential growth and selection. Here we introduce mutation and growth advantages to study the possibility of Darwinian-like evolution. We seed and grow one dimer species, AB, from A and B monomers that doubles in each cycle. A similar species from C and D monomers can replicate at a controlled growth rate of two or four per cycle but is unseeded. Introducing a small mutation rate so that AB parents infrequently template CD offspring we show experimentally that the CD species can take over the system in approximately six generations in an advantageous environment. This demonstration opens the door to the use of evolution in materials design.


Subject(s)
Biological Evolution , DNA Replication/physiology , DNA/chemistry , Genetic Fitness , Animals , Base Sequence , Biochemical Phenomena , DNA/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...