Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 344
Filter
1.
Int Immunopharmacol ; 137: 112412, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38901242

ABSTRACT

OBJECTIVE: Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is caused by an imbalance between pathogens and impaired host immune responses. Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MAB) are the two major pathogens that cause NTM-PD. In this study, we sought to dissect the transcriptomes of peripheral blood immune cells at the single-cell resolution in NTM-PD patients and explore potential clinical markers for NTM-PD diagnosis and treatment. METHODS: Peripheral blood samples were collected from six NTM-PD patients, including three MAB-PD patients, three MAC-PD patients, and two healthy controls. We employed single-cell RNA sequencing (scRNA-seq) to define the transcriptomic landscape at a single-cell resolution. A comprehensive scRNA-seq analysis was performed, and flow cytometry was conducted to validate the results of scRNA-seq. RESULTS: A total of 27,898 cells were analyzed. Nine T-cells, six mononuclear phagocytes (MPs), and four neutrophil subclusters were defined. During NTM infection, naïve T-cells were reduced, and effector T-cells increased. High cytotoxic activities were shown in T-cells of NTM-PD patients. The proportion of inflammatory and activated MPs subclusters was enriched in NTM-PD patients. Among neutrophil subclusters, an IFIT1+ neutrophil subcluster was expanded in NTM-PD compared to healthy controls. This suggests that IFIT1+ neutrophil subcluster might play an important role in host defense against NTM. Functional enrichment analysis of this subcluster suggested that it is related to interferon response. Cell-cell interaction analysis revealed enhanced CXCL8-CXCR1/2 interactions between the IFIT1+ neutrophil subcluster and NK cells, NKT cells, classical mononuclear phagocytes subcluster 1 (classical Mo1), classical mononuclear phagocytes subcluster 2 (classical Mo2) in NTM-PD patients compared to healthy controls. CONCLUSIONS: Our data revealed disease-specific immune cell subclusters and provided potential new targets of NTM-PD. Specific expansion of IFIT1+ neutrophil subclusters and the CXCL8-CXCR1/2 axis may be involved in the pathogenesis of NTM-PD. These insights may have implications for the diagnosis and treatment of NTM-PD.

2.
Opt Express ; 32(12): 21755-21766, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859522

ABSTRACT

Quantum sensing using Rydberg atoms is an emerging technology for precise measurement of electric fields. However, most existing computational methods are all based on a single-particle model and neglect Rydberg-Rydberg interaction between atoms. In this study, we introduce the interaction term into the conventional four-level optical Bloch equations. By incorporating fast iterations and solving for the steady-state solution efficiently, we avoid the computation of a massive 4N × 4N dimensional matrix. Additionally, we apply the Doppler frequency shift to each atom used in the calculation, eliminating the requirement for an additional Doppler iteration. These schemes allow for the calculation of the interaction between 7000 atoms around one minute. Based on the many-body model, we investigate the Rydberg-Rydberg interaction of Rydberg atoms under different atomic densities. Furthermore, we compare our results with the literature data of a three-level system and the experimental results of our own four-level system. The results demonstrate the validity of our model, with an effective error of 4.59% compared to the experimental data. Finally, we discover that the many-body model better predicts the linear range for measuring electric fields than the single-particle model, making it highly applicable in precise electric field measurements.

3.
Clin Genitourin Cancer ; 22(3): 102086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697880

ABSTRACT

INTRODUCTION: Men with advanced germ cell tumors (GCT) treated with chemotherapy are at high risk of venous thromboembolism (VTE). Predictors of VTE may identify patients who would benefit from prophylactic anticoagulation. PATIENTS AND METHODS: Men with advanced GCT (Stage IS, II, III) treated with chemotherapy were identified at 2 centers. High genomic risk was defined from a 5 single nucleotide polymorphism (SNP) germline panel. Logistic regression was used to evaluate the impact of genomic risk on VTE within 6 months of chemotherapy initiation. Orthogonal Projection to Latent Structures Discriminant Analysis (OPLS-DA) was used to build models to predict VTE based on clinical variables and an 86 SNP panel. RESULTS: This 123-patient cohort experienced a VTE rate of 26% with an incidence of high genomic risk of 21%. Men with high genomic risk did not have a significantly higher VTE rate (31%, 8/26) than men with low genomic risk (25%, 24/97), unadjusted OR 1.4 (95% CI 0.5-3.5, P = .54). Incorporation of clinical variables (Khorana score, N3 status and elevated LDH) resulted in adjusted OR 2.1 (95% CI 0.7-6.5, P = .18). A combined model using clinical variables and 86 SNPs performed similarly (AUC 0.77) compared to clinical variables alone (AUC 0.72). CONCLUSIONS: A previously established 5-SNP panel was not associated with VTE among patients with GCT receiving chemotherapy. However, multivariable models based on clinical variables alone warrant further validation to inform prophylactic anticoagulation strategies.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Polymorphism, Single Nucleotide , Humans , Male , Neoplasms, Germ Cell and Embryonal/drug therapy , Neoplasms, Germ Cell and Embryonal/genetics , Adult , Venous Thromboembolism/genetics , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology , Thrombophilia/genetics , Thrombophilia/drug therapy , Middle Aged , Risk Factors , Anticoagulants/therapeutic use , Anticoagulants/administration & dosage , Young Adult , Incidence , Testicular Neoplasms/drug therapy , Testicular Neoplasms/genetics , Genetic Predisposition to Disease , Retrospective Studies
5.
Nat Commun ; 15(1): 4216, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760394

ABSTRACT

Antimicrobial peptides (AMPs), ancient scavengers of bacteria, are very poorly induced in macrophages infected by Mycobacterium tuberculosis (M. tuberculosis), but the underlying mechanism remains unknown. Here, we report that L-alanine interacts with PRSS1 and unfreezes the inhibitory effect of PRSS1 on the activation of NF-κB pathway to induce the expression of AMPs, but mycobacterial alanine dehydrogenase (Ald) Rv2780 hydrolyzes L-alanine and reduces the level of L-alanine in macrophages, thereby suppressing the expression of AMPs to facilitate survival of mycobacteria. Mechanistically, PRSS1 associates with TAK1 and disruptes the formation of TAK1/TAB1 complex to inhibit TAK1-mediated activation of NF-κB pathway, but interaction of L-alanine with PRSS1, disables PRSS1-mediated impairment on TAK1/TAB1 complex formation, thereby triggering the activation of NF-κB pathway to induce expression of AMPs. Moreover, deletion of antimicrobial peptide gene ß-defensin 4 (Defb4) impairs the virulence by Rv2780 during infection in mice. Both L-alanine and the Rv2780 inhibitor, GWP-042, exhibits excellent inhibitory activity against M. tuberculosis infection in vivo. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses its own alanine dehydrogenase to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


Subject(s)
Alanine , Antimicrobial Peptides , Macrophages , Mycobacterium tuberculosis , NF-kappa B , Tuberculosis , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/metabolism , Animals , Mice , NF-kappa B/metabolism , Humans , Macrophages/microbiology , Macrophages/metabolism , Macrophages/immunology , Alanine/metabolism , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/genetics , Tuberculosis/microbiology , Tuberculosis/immunology , Alanine Dehydrogenase/metabolism , Alanine Dehydrogenase/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Signal Transduction , Mice, Inbred C57BL , RAW 264.7 Cells , Female
6.
Article in English | MEDLINE | ID: mdl-38581318

ABSTRACT

Objective: This study aims to investigate the prevalence of NTM in household water in China and assess its potential role as a source of infection for NTM pulmonary disease, a crucial step for understanding and controlling the spread of this increasingly prevalent disease. Methods: To examine the prevalence of mycobacteria in household water, 500 mL water samples and swabs were collected from all taps of 19 patients' homes. The amplification of mycobacterial 16SrRNA with bacteriological identification was as a protocol to discriminate mycobacterial isolations from non- mycobacterial isolations. The 570bp 16SrRNA amplicon was sequenced and used to define mycobacterial species. Results: The mycobacteria isolated from clinical samples from 19 patients included M. intracellulare, M. avium, M. abscessus, and M. kansasii. NTM isolated from household water of patients included M. avium (1 case), M. abscessus (2 cases), M. kansasii (8 cases), M. gordonae (1 case), M. gilvum (1 case), M. fortuitum (1 case), M. porcinum (1 case). M. abscessus, M. kansasii, and M. avium causing human disease were isolated from household water. Though M. intracellulare was the predominant species isolated from patients with NTM pulmonary disease, it was not found in household water. In addition, our results revealed that NTM preferentially colonize in biofilm/sediment (75% of positive growths were from tap swab samples), indicating the significance of finding specific NTM species in household water in relation to the patients' conditions, or the lack of correlation between M. intracellulare in patients and its absence in household water. Conclusions: The isolation of pathogenic NTM species from household water underscores the critical role of water hygiene in preventing NTM pulmonary disease and highlights the need for targeted public health strategies.

7.
Opt Express ; 32(7): 11259-11270, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38570977

ABSTRACT

Photonic topological insulators with topologically protected edge states featuring one-way, robustness and backscattering-immunity possess extraordinary abilities to steer and manipulate light. In this work, we construct a topological heterostructure (TH) consisting of a domain of nontrivial pseudospin-type topological photonic crystals (PCs) sandwiched between two domains of trivial PCs based on two-dimensional all-dielectric core-shell PCs in triangle lattice. We consider three THs with different number of layers in the middle nontrivial domain (i.e., one-layer, two-layer, three-layer) and demonstrate that the projected band diagrams of the three THs host interesting topological waveguide states (TWSs) with properties of one-way, large-area, broad-bandwidth and robustness due to coupling effect of the helical edge states associated with the two domain-wall interfaces. Moreover, taking advantage of the tunable bandgap between the TWSs by the layer number of the middle domain due to the coupling effect, a topological Y-splitter with functionality of wavelength division multiplexing is explicitly demonstrated exploiting the unique feature of the dispersion curves of TWSs in the three THs. Our work not only offers a new method to realize pseudospin-polarized large-area TWSs with tunable mode-width, but also could provide new opportunities for practical applications in on-chip multifunctional (i.e., wavelength division multiplexing) photonic devices with topological protection and information processing with pseudospin-dependent transport.

8.
Opt Express ; 32(6): 8751-8762, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571125

ABSTRACT

The combination of surface coils and metamaterials remarkably enhance magnetic resonance imaging (MRI) performance for significant local staging flexibility. However, due to the coupling in between, impeded signal-to-noise ratio (SNR) and low-contrast resolution, further hamper the future growth in clinical MRI. In this paper, we propose a high-Q metasurface decoupling isolator fueled by topological LC loops for 1.5T surface coil MRI system, increasing the magnetic field up to fivefold at 63.8 MHz. We have employed a polarization conversion mechanism to effectively eliminate the coupling between the MRI metamaterial and the radio frequency (RF) surface transmitter-receiver coils. Furthermore, a high-Q metasurface isolator was achieved by taking advantage of bound states in the continuum (BIC) for extremely high-resolution MRI and spectroscopy. An equivalent physical model of the miniaturized metasurface design was put forward through LC circuit analysis. This study opens up a promising route for the easy-to-use and portable surface coil MRI scanners.

9.
Clin Breast Cancer ; 24(5): e396-e407.e4, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38492996

ABSTRACT

PURPOSE: Postmastectomy radiation therapy (PMRT) reduces locoregional recurrence (LRR) and improves overall survival (OS) in patients with breast cancer. Young age has been recognized as a risk factor for LRR. The primary objective of this study was to determine if recommendations for PMRT differed among patients younger than 50 years as compared to women aged 50 years or older. METHODS: We reviewed medical records of patients with breast cancer who underwent mastectomy with or without PMRT from 2010 through 2018. Univariable and multivariable models were used to estimate the association of age with PMRT. RESULTS: Of 2471 patients, 839 (34%) were <50 years; 1632 (66%) were ≥50 years. Patients <50 years had a higher percentage of grade 3 tumors, hormone receptor (HR) negative and/or Her-2/neu positive tumors, clinical stage T2/T3 tumors, and nodal involvement. Compared with patients ≥50 years, patients <50 years were more likely to undergo PMRT (OR 1.57; P = .001) and regional node irradiation (RNI) to the internal mammary nodes. Advanced clinical and pathologic stage, invasive tumor histology, the presence of lymphovascular invasion, and treatment with systemic chemotherapy were predictors of PMRT receipt for patients <50 years (P < .05). PMRT was associated with improved OS and recurrence free survival (RFS) among all patients (P < .01). CONCLUSION: Patients <50 years were more likely to undergo PMRT and to receive RNI to the internal mammary nodes but were also more likely to have other risk factors for recurrence that would warrant a PMRT recommendation. PMRT improved OS and RFS for all patients.


Subject(s)
Breast Neoplasms , Mastectomy , Neoplasm Recurrence, Local , Humans , Female , Breast Neoplasms/radiotherapy , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Breast Neoplasms/mortality , Middle Aged , Mastectomy/statistics & numerical data , Age Factors , Radiotherapy, Adjuvant/statistics & numerical data , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/prevention & control , Adult , Aged , Retrospective Studies , Neoplasm Staging , Risk Factors
10.
Eur J Med Res ; 29(1): 147, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429734

ABSTRACT

BACKGROUND: The aim of the study was to investigate whether the expression of CD27-CD38+ in interferon (IFN)-γ+CD4+ T cells stimulated by the specific antigen early secreted antigenic target-6 (ESAT-6)/culture filter protein-10 (CFP-10) could be a potential new therapeutic evaluation indicator for anti-tuberculosis (TB) treatment. METHODS: Newly diagnosed active pulmonary TB patients, latent TB infection (LTBI) and healthy controls were enrolled from January 2021 to December 2021. PTB patients were treated by standard anti-TB regimen 2HREZ/4HR (2 months of isoniazid (H), rifampin (R), ethambutol (E), and pyrazinamide (Z) followed by 4 months of isoniazid (H) and rifampin (R)). The difference of CD27-CD38+ expression in IFN-γ+CD4+ T cells before treatment, 2 months after treatment, and 6 months after treatment were compared. RESULTS: Total 45 PTB patients, 38 LTBI cases and 43 healthy controls were enrolled. The expression of CD27-CD38+ decreased significantly after anti-TB treatment and was comparable with that in LTBI and healthy controls when the 6-month anti-TB treatment course was completed. The decline rate of CD27-CD38+ between 6 months after treatment and baseline was positively correlated with erythrocyte sedimentation rate (r = 0.766, P < 0.0001), C-reactive protein (r = 0.560, P = 0.003) and chest computerized tomography severity score (r = 0.632, P = 0.0005). The area under receiver operator characteristic curve of CD27-CD38+ in distinguish pulmonary TB patients before and after treatment was 0.779. CONCLUSION: The expression of CD27-CD38+ in ESAT-6/CFP-10 stimulated IFN-γ+CD4+T cells can well reflect the changes of the disease before and after anti-TB treatment, which is expected to be a potential new therapeutic evaluation index. Clinical Registry number chiCTR1800019966.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , CD4-Positive T-Lymphocytes , Isoniazid/pharmacology , Isoniazid/therapeutic use , Isoniazid/metabolism , Rifampin/metabolism , Tuberculosis/diagnosis , Tuberculosis, Pulmonary/drug therapy
11.
Cell Discov ; 10(1): 36, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38548762

ABSTRACT

Internal N6-methyladenosine (m6A) modifications are among the most abundant modifications of messenger RNA, playing a critical role in diverse biological and pathological processes. However, the functional role and regulatory mechanism of m6A modifications in the immune response to Mycobacterium tuberculosis infection remains unknown. Here, we report that methyltransferase-like 14 (METTL14)-dependent m6A methylation of NAPDH oxidase 2 (Nox2) mRNA was crucial for the host immune defense against M. tuberculosis infection and that M. tuberculosis-secreted antigen EsxB (Rv3874) inhibited METTL14-dependent m6A methylation of Nox2 mRNA. Mechanistically, EsxB interacted with p38 MAP kinase and disrupted the association of TAB1 with p38, thus inhibiting the TAB1-mediated autophosphorylation of p38. Interaction of EsxB with p38 also impeded the binding of p38 with METTL14, thereby inhibiting the p38-mediated phosphorylation of METTL14 at Thr72. Inhibition of p38 by EsxB restrained liquid-liquid phase separation (LLPS) of METTL14 and its subsequent interaction with METTL3, preventing the m6A modification of Nox2 mRNA and its association with the m6A-binding protein IGF2BP1 to destabilize Nox2 mRNA, reduce ROS levels, and increase intracellular survival of M. tuberculosis. Moreover, deletion or mutation of the phosphorylation site on METTL14 impaired the inhibition of ROS level by EsxB and increased bacterial burden or histological damage in the lungs during infection in mice. These findings identify a previously unknown mechanism that M. tuberculosis employs to suppress host immunity, providing insights that may empower the development of effective immunomodulators that target M. tuberculosis.

12.
J Microbiol Methods ; 219: 106894, 2024 04.
Article in English | MEDLINE | ID: mdl-38325717

ABSTRACT

The multidrug resistance of nontuberculous mycobacteria (NTM) poses a significant therapeutic challenge. Rapid and reliable drug susceptibility testing is urgently needed for evidence-based treatment decision, especially for macrolides. This study evaluated the utility of nucleotide matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (NMTMS) in detecting clarithromycin resistance. Sixty-four clinical isolates were identified to species by NMTMS, and mutations associated with clarithromycin resistance were detected. Twenty-three M. abscessus (MAB) isolates and 30 M. intracellulare isolates (including M. intracellulare alone and M. intracellulare in combination with other SGM species) were included for analysis. The predictive sensitivity of NMTMS in detecting clarithromycin resistance was 82.35% (95% CI, 56.57% to 96.20%), with an AUC of 0.89 (95% CI, 0.77 to 0.96) in all MAB and M. intracellulare (n = 53), and up to 93.33% (95% CI, 68.05% to 99.83%) in MAB alone (n = 23). The assay provides a rapid, high-throughput, and highly sensitive tool for detecting clarithromycin resistance in NTM, especially in MAB. Optimization of the panel is necessary to enhance diagnostic accuracy.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium tuberculosis , Humans , Nontuberculous Mycobacteria , Clarithromycin/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Mycobacterium Infections, Nontuberculous/diagnosis , Microbial Sensitivity Tests
13.
Tree Physiol ; 44(2)2024 02 11.
Article in English | MEDLINE | ID: mdl-38263488

ABSTRACT

Mongolian willow (Salix linearistipularis) is a naturally occurring woody dioecious plant in the saline soils of north-eastern China, which has a high tolerance to alkaline salts. Although transcriptomics studies have identified a large number of salinity-responsive genes, the mechanism of salt tolerance in Mongolian willow is not clear. Here, we found that in response to Na2CO3 stress, Mongolian willow regulates osmotic homeostasis by accumulating proline and soluble sugars and scavenges reactive oxygen species (ROS) by antioxidant enzymes and non-enzymatic antioxidants. Our quantitative proteomics study identified 154 salt-sensitive proteins mainly involved in maintaining the stability of the photosynthetic system and ROS homeostasis to cope with Na2CO3 stress. Among them, Na2CO3-induced rubredoxin (RUB) was predicted to be associated with 122 proteins for the modulation of these processes. The chloroplast-localized S. linearistipularis rubredoxin (SlRUB) was highly expressed in leaves and was significantly induced under Na2CO3 stress. Phenotypic analysis of overexpression, mutation and complementation materials of RUB in Arabidopsis suggests that SlRUB is critical for the regulation of photosynthesis, ROS scavenging and other metabolisms in the seedlings of Mongolian willow to cope with Na2CO3 stress. This provides more clues to better understand the alkali-responsive mechanism and RUB functions in the woody Mongolian willow.


Subject(s)
Arabidopsis , Salix , Reactive Oxygen Species/metabolism , Salix/genetics , Seedlings/genetics , Seedlings/metabolism , Rubredoxins/metabolism , Proteomics , Plant Proteins/genetics , Plant Proteins/metabolism , Antioxidants/metabolism , Arabidopsis/genetics
14.
Asian J Surg ; 47(2): 1055-1056, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042658
16.
J Cereb Blood Flow Metab ; 44(3): 419-433, 2024 03.
Article in English | MEDLINE | ID: mdl-37871622

ABSTRACT

Cerebral vasogenic edema, a severe complication of ischemic stroke, aggravates neurological deficits. However, therapeutics to reduce cerebral edema still represent a significant unmet medical need. Brain microvascular endothelial cells (BMECs), vital for maintaining the blood-brain barrier (BBB), represent the first defense barrier for vasogenic edema. Here, we analyzed the proteomic profiles of the cultured mouse BMECs during oxygen-glucose deprivation and reperfusion (OGD/R). Besides the extensively altered cytoskeletal proteins, ephrin type-A receptor 4 (EphA4) expressions and its activated phosphorylated form p-EphA4 were significantly increased. Blocking EphA4 using EphA4-Fc, a specific and well-tolerated inhibitor shown in our ongoing human phase I trial, effectively reduced OGD/R-induced BMECs contraction and tight junction damage. EphA4-Fc did not protect OGD/R-induced neuronal and astrocytic death. However, administration of EphA4-Fc, before or after the onset of transient middle cerebral artery occlusion (tMCAO), reduced brain edema by about 50%, leading to improved neurological function recovery. The BBB permeability test also confirmed that cerebral BBB integrity was well maintained in tMCAO brains treated with EphA4-Fc. Therefore, EphA4 was critical in signaling BMECs-mediated BBB breakdown and vasogenic edema during cerebral ischemia. EphA4-Fc is promising for the treatment of clinical post-stroke edema.


Subject(s)
Brain Edema , Brain Ischemia , Stroke , Mice , Humans , Animals , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Proteomics , Stroke/complications , Stroke/drug therapy , Stroke/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Brain Edema/drug therapy , Brain Edema/etiology , Brain Edema/metabolism , Oxygen/metabolism , Edema/metabolism
18.
Article in English | MEDLINE | ID: mdl-38064622

ABSTRACT

Objective: Nontuberculous mycobacteria (NTM) prevalence in water systems has raised concerns about Nontuberculous Mycobacteria Pulmonary Disease (NTM-PD). Understanding the relationship between NTM-PD, drinking water distribution systems (DWDS), and other epidemiological factors is crucial for public health. Methods: A case-control study was conducted at the Inpatient Department of Tuberculosis Department of Shanghai Pulmonary Hospital. Subjects were divided into the NTM-PD group (n = 314) and pulmonary tuberculosis (PTB) group (n = 308) at a 1:1 ratio. Data was collected through questionnaires covering general information, depression (Self-Rating Depression Scale, SDS), and anxiety (Self-Rating Anxiety Scale, SAS). Multivariate unconditional logistic regression analysis was employed for the study. Results: The average age of NTM-PD patients was 55.26±14.44, with clinical symptoms including chest tightness, shortness of breath, hemoptysis, fever, and expectoration. Risk factors for NTM-PD included age (>60 years old, OR=1.042), gender (female, OR = 3.089), secondary water supply system (OR = 7.813), occupation (farmer/flower farmer, OR=2.676), depression (OR = 2.956), recurrent bronchiectasis (OR = 6.314), chronic obstructive pulmonary disease (COPD, OR = 2.704), and autoimmune disease (OR = 13.588) (P < .05). Use of household water purifiers was identified as a protective factor (OR = 0.128, P < .001). Conclusion: DWDS, drinking water mode, soil-related occupation, bronchiectasis, COPD, age, sex, and depression were closely related to the risk of NTM-PD. It is suggested to pay attention to water hygiene and illness progress and regulate mood to prevent NTM-PD in daily life.

19.
Ann Clin Microbiol Antimicrob ; 22(1): 106, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057841

ABSTRACT

OBJECTIVE: To evaluate the effectiveness and safety of linezolid-containing regimens for treatment of M. abscessus pulmonary disease. METHODS: The records of 336 patients with M. abscessus pulmonary disease who were admitted to Shanghai Pulmonary Hospital from January 2018 to December 2020 were retrospectively analyzed. A total of 164 patients received a linezolid-containing regimen and 172 controls did not. The effectiveness, safety, antibiotic susceptibility profiles, outcomes, culture conversion, cavity closure, and adverse reactions were compared in these two groups. RESULTS: The two groups had similar treatment success (56.1% vs. 48.8%; P > 0.05), but treatment duration was shorter in the linezolid group (16.0 months [inter-quartile ranges, IQR: 15.0-17.0] vs. 18.0 months [IQR: 16.0-18.0]; P < 0.01). The rates of sputum culture conversion were similar (53.7% vs. 46.5%, P > 0.05), but time to conversion was shorter in the linezolid group (3.5 months [IQR: 2.5-4.4] vs. 5.5 months [IQR: 4.0-6.8]; P < 0.01). The linezolid group had a higher rate of cavity closure (55.2% vs. 28.6%, P < 0.05) and a shorter time to cavity closure (3.5 months [IQR: 2.5-4.4] vs. 5.5 months [IQR: 4.0-6.8]; P < 0.01). Anemia and peripheral neuropathy were more common in the linezolid group (17.7% vs. 1.7%, P < 0.01; 12.8% vs. 0.6%, P < 0.01). CONCLUSIONS: The linezolid and control groups had similar treatment success rates. The linezolid group had a shorter treatment duration, shorter time to sputum culture conversion, and higher rate and shorter time to lung cavity closure. More patients receiving linezolid developed anemia and peripheral neuropathy.


Subject(s)
Anemia , Lung Diseases , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Peripheral Nervous System Diseases , Humans , Linezolid/adverse effects , Retrospective Studies , China , Lung Diseases/drug therapy , Lung Diseases/chemically induced , Lung Diseases/microbiology , Treatment Outcome , Anemia/chemically induced , Anemia/drug therapy , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Mycobacterium Infections, Nontuberculous/drug therapy , Anti-Bacterial Agents/adverse effects
20.
Infect Drug Resist ; 16: 7587-7595, 2023.
Article in English | MEDLINE | ID: mdl-38107433

ABSTRACT

Background: New antituberculosis drugs have recently been approved for the treatment of multidrug-resistant tuberculosis TB (MDR-TB). We aimed to describe the distributions of bedaquiline, delamanid, linezolid, clofazimine, and capreomycin MIC values for M. tuberculosis. Methods: M. tuberculosis clinical isolates were originally isolated from 2020 to 2021 from 1452 different pulmonary tuberculosis patients of the Shanghai Pulmonary Hospital in China. The drug susceptibility testing was performed using the Sensititre custom plates (SHTBMY) (TREK Diagnostic Systems, Thermo Fisher Scientific In., USA) consisting of a 96-well microtitre plate containing 4 (bedaquiline, delamanid, clofazimine, capreomycin) antimicrobial agents. MICs were determined for linezolid using a microdilution method. Results: Based on the latest definitions, 156 (10.74%) were MDR-TB, 93 (6.40%) were pre-XDR-TB, and 27 (1.86%) were XDR-TB. The rate of BDQ resistance in cases of MDR-TB was 7.69%, while it was observed to be 10.75% in cases of pre-XDR-TB, and significantly higher at 37.04% in cases of XDR-TB. The lowest rate of drug resistance against M. tuberculosis was DLM (0.14%). For LZD, 11 (0.76%) clinical isolates were resistant, based on the CLSI breakpoint of 1µg/mL. The five strains with a MIC value of >32 for LZD resistance were XDR-TB isolates. Among all MDR, pre-XDR, and XDR isolates tested, LZD' MIC50 increased from 0.25 and 0.5 to 1µg/mL. The MIC90 value of LZD against XDR-TB isolates was 32µg/mL. For CFZ, six isolates with elevated MICs of ≥2µg/mL. CFZ's MIC50 and MIC90 values in all isolates were 0.12µg/mL and 0.25µg/mL, respectively. Conclusion: The study findings indicate that BDQ, DLM, CFZ, and LZD may exhibited excellent in vitro activity against MDR-TB isolates. Detection of resistance to BDQ and LZD was alarming for XDR-TB isolates. It is necessary to perform universal drug sensitivity testing for M. tuberculosis, especially MDR-TB and XDR-TB patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...