Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 12(15): 3676-3685, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38530749

ABSTRACT

An innate immune system intricately leverages unique mechanisms to inhibit colonization of external invasive Bacteria, for example human defensin-6, through responsive encapsulation of bacteria. Infection and accompanying antibiotic resistance stemming from Gram-negative bacteria aggregation represent an emerging public health crisis, which calls for research into novel anti-bacterial therapeutics. Herein, inspired by naturally found host-defense peptides, we design a defensin-like peptide ligand, bacteria extracellular trap (BET) peptide, with modular design composed of targeting, assembly, and hydrophobic motifs with an aggregation-induced emission feature. The ligand specifically recognizes Gram-negative bacteria via targeting cell wall conserved lipopolysaccharides (LPS) and transforms from nanoparticles to nanofibrous networks in situ to trap bacteria and induce aggregation. Importantly, treatment of the BET peptide was found to have an antibacterial effect on the Pseudomonas aeruginosa strain, which is comparable to neomycin. Animal studies further demonstrate its ability to trigger aggregation of bacteria in vivo. This biomimetic self-assembling BET peptide provides a novel approach to fight against pathogenic Gram-negative bacteria.


Subject(s)
Extracellular Traps , Animals , Humans , Ligands , Gram-Negative Bacteria , Antimicrobial Cationic Peptides/pharmacology , Defensins/pharmacology
2.
Biomater Sci ; 12(4): 990-1003, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38193333

ABSTRACT

Fungal infections contribute substantially to human morbidity and mortality. A particular concern is the high rate of mortality associated with invasive fungal infections, which often exceeds 50.0% despite the availability of several antifungal drugs. Herein, we show a self-assembling antifungal peptide (AFP), which is able to bind to chitin on the fungal cell wall and in situ form AFP nanofibers, wrapping fungi. As a result, AFP limits the proliferation of fungi, slows down the morphological transformation of biphasic fungi, and inhibits the adhesion of fungi to host cells and the formation of biofilms. Compared to the broad-spectrum antifungal fluconazole, AFP achieved a comparable inhibitory effect (MIC50 = 3.5 µM) on fungal proliferation. In addition, AFP significantly inhibited the formation of fungal biofilms with the inhibition rate of 69.6% at 1 µM, better than fluconazole (17.2% at 1 µM). In a skin infection model of mice, it was demonstrated that AFP showed significantly superior efficacy to fluconazole. In the systemic candidiasis mouse model, AFP showed similar efficacy to first-line antifungal amphotericin B (AmpB) and anidulafungin (AFG). This study provides a promising wrapping strategy for anti-fungal infection.


Subject(s)
Antifungal Agents , Fluconazole , Humans , Animals , Mice , Antifungal Agents/pharmacology , Fluconazole/pharmacology , Fluconazole/metabolism , alpha-Fetoproteins/metabolism , alpha-Fetoproteins/pharmacology , Peptides/pharmacology , Peptides/metabolism , Fungi/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...