Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 279: 116469, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38772141

ABSTRACT

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphate ester that can adversely affect animal or human health. The intestinal microbiota is critical to human health. High-dose exposure to TDCIPP can markedly affect the intestinal ecosystem of mice, but the effects of long-term exposure to lower concentrations of TDCIPP on the intestinal flora and body metabolism remain unclear. In this study, TDCIPP was administered to Sprague-Dawley rats by gavage at a dose of 13.3 mg/kg bw/day for 90 days. TDCIPP increased the relative weight of the kidneys (P = 0.017), but had no effect on the relative weight of the heart, liver, spleen, lungs, testes, and ovaries (P > 0.05). 16 S rRNA gene sequencing revealed that long-term TDCIPP exposure affected the diversity, relative abundance, and functions of rat gut microbes. The serum metabolomics of the rats showed that TDCIPP can disrupt the serum metabolic profiles, result in the up-regulation of 26 metabolites and down-regulation of 3 metabolites, and affect multiple metabolic pathways in rat sera. In addition, the disturbed genera and metabolites were correlated. The functions of some disturbed gut microbes were consistent with the affected metabolic pathways in the sera, and these metabolic pathways were all associated with kidney disease, suggesting that TDCIPP may cause kidney injury in rats by affecting the intestinal flora and serum metabolism.


Subject(s)
Gastrointestinal Microbiome , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Rats , Male , Female , Kidney/drug effects , RNA, Ribosomal, 16S , Organophosphorus Compounds
2.
Chemosphere ; 358: 142187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685327

ABSTRACT

Bisphenol analogs (BPs) are extensively employed in commercial and industrial products and they have been found in a variety of environmental matrices and human samples. The red swamp crayfish (Procambarus clarkii) has been a trendy food in China in recent decades. However, the levels of BPs in Chinese crayfish and the associated hazards of human exposure remain unknown. Thus, in this study, the levels of eight BPs in crayfish gathered from five major provinces engaged in crayfish within the Yangtze River Basin were analyzed. Additionally, the health risks for humans by ingesting crayfish were calculated. BPs were frequently detected in crayfish tissues, indicating the wide occurrence of these chemicals. In comparison to other substitutions, BPA remains the dominant bisphenol analog. Most of the BPs were observed to accumulate in the hepatopancreas compared to the muscle, so consuming the hepatopancreas of crayfish is not recommended. With the exception of BPS, the Estimated Daily Intakes (EDIs) of the remaining BPs exceeded the Tolerable Daily Intake (TDI) specified by the European Food Safety Authority (EFSA) by a factor of 1.75-69.0. The mean hazard index (HI) values exceeded 1 for both hepatopancreas and muscle in all provinces, and the mean HI values for hepatopancreas were significantly higher than those for muscle, indicating potential health risks for local consumers.


Subject(s)
Astacoidea , Benzhydryl Compounds , Phenols , Water Pollutants, Chemical , Animals , Phenols/analysis , China , Water Pollutants, Chemical/analysis , Benzhydryl Compounds/analysis , Humans , Risk Assessment , Hepatopancreas/chemistry , Environmental Monitoring , Food Contamination/analysis
3.
Front Microbiol ; 14: 1195137, 2023.
Article in English | MEDLINE | ID: mdl-37389343

ABSTRACT

Clarifying mechanisms underlying the selective adhesion of probiotics and competitive exclusion of pathogens in the intestine is a central theme for shrimp health. Under experimental manipulation of probiotic strain (i.e., Lactiplantibacillus plantarum HC-2) adhesion to the shrimp mucus, this study tested the core hypothesis that homologous genes shared between probiotic and pathogen would affect the adhesion of probiotics and exclusion of pathogens by regulating the membrane proteins of probiotics. Results indicated that the reduction of FtsH protease activity, which significantly correlated with the increase of membrane proteins, could increase the adhesion ability of L. plantarum HC-2 to the mucus. These membrane proteins mainly involved in transport (glycine betaine/carnitine/choline ABC transporter choS, ABC transporter, ATP synthase subunit a atpB, amino acid permease) and regulation of cellular processes (histidine kinase). The genes encoding the membrane proteins were significantly (p < 0.05) up-regulated except those encoding ABC transporters and histidine kinases in L. plantarum HC-2 when co-cultured with Vibrio parahaemolyticus E1, indicating that these genes could help L. plantarum HC-2 to competitively exclude pathogens. Moreover, an arsenal of genes predicted to be involved in carbohydrate metabolism and bacteria-host interactions were identified in L. plantarum HC-2, indicating a clear strain adaption to host's gastrointestinal tract. This study advances our mechanistic understanding of the selective adhesion of probiotics and competitive exclusion of pathogens in the intestine, and has important implications for screening and applying new probiotics for maintaining gut stability and host health.

4.
Ecotoxicol Environ Saf ; 257: 114926, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37094483

ABSTRACT

Iodoacetic acid (IAA) is an emerging and the most genotoxic iodinated disinfection byproduct to date. IAA can disrupt the thyroid endocrine function in vivo and in vitro, but the underlying mechanisms remain unclear. In this work, transcriptome sequencing was used to investigate the effect of IAA on the cellular pathways of human thyroid follicular epithelial cell line Nthy-ori 3-1 and determine the mechanism of IAA on the synthesis and secretion of thyroid hormone (TH) in Nthy-ori 3-1 cells. Results of transcriptome sequencing indicated that IAA affected the TH synthesis pathway in Nthy-ori 3-1 cells. IAA reduced the mRNA expression of thyroid stimulating hormone receptor, sodium iodide symporter, thyroid peroxidase, thyroglobulin, paired box 8 and thyroid transcription factor-2, inhibited the cAMP/PKA pathway and Na+-K+-ATPase, and decreased the iodine intake. The results were confirmed by our previous findings in vivo. Additionally, IAA downregulated glutathione and the mRNA expression of glutathione peroxidase 1, leading to increased reactive oxygen species production. This study is the first to elucidate the mechanisms of IAA on TH synthesis in vitro. The mechanisms are associated with down-regulating the expression of genes related to TH synthesis, inhibiting iodine uptake, and inducing oxidative stress. These findings may improve future health risk assessment of IAA on thyroid in human.


Subject(s)
Drinking Water , Iodine , Humans , Thyroid Gland , Iodoacetic Acid/toxicity , Iodoacetic Acid/metabolism , Drinking Water/analysis , Disinfection/methods , Thyroid Hormones/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Iodine/metabolism
5.
Front Plant Sci ; 14: 1320976, 2023.
Article in English | MEDLINE | ID: mdl-38235210

ABSTRACT

Introduction: Continuous identification and application of novel resistance genes against stripe rust are of great importance for wheat breeding. Wild emmer wheat, Triticum dicoccoides, has adapted to a broad range of environments and is a valuable genetic resource that harbors important beneficial traits, including resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). However, there has been a lack of systematic exploration of genes against Pst races in wild emmer wheat. Methods: Genome-wide transcriptome profiles were conducted on two wild emmer wheat genotypes with different levels of resistance to (Pst (DR3 exhibiting moderate (Pst resistance, and D7 displaying high (Pst resistance). qRT-PCR was performed to verify findings by RNA-seq. Results: A higher number of DEGs were identified in the moderately (Pst-resistant genotype, while the highly (Pst-resistant genotype exhibited a greater enrichment of pathways. Nonetheless, there were consistent patterns in the enrichment of pathways between the two genotypes at the same time of inoculation. At 24 hpi, a majority of pathways such as the biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, phenylalanine metabolism, and alpha-Linolenic acid metabolism exhibited significant enrichment in both genotypes. At 72 hpi, the biosynthesis of secondary metabolites and circadian rhythm-plant pathways were notably and consistently enriched in both genotypes. The majority of (WRKY, MADs , and AP2-ERF families were found to be involved in the initial stage of response to Pst invasion (24 hpi), while the MYB, NAC, TCP, and b-ZIP families played a role in defense during the later stage of Pst infection (72 hpi). Discussion: In this present study, we identified numerous crucial genes, transcription factors, and pathways associated with the response and regulation of wild emmer wheat to Pst infection. Our findings offer valuable information for understanding the function of crucial Pst-responsive genes, and will deepen the understanding of the complex resistance mechanisms against Pst in wheat.

6.
J Environ Sci (China) ; 117: 91-104, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35725093

ABSTRACT

Iodoacetic acid (IAA) is an unregulated disinfection byproduct in drinking water and has been shown to exert cytotoxicity, genotoxicity, tumorigenicity, and reproductive and developmental toxicity. However, the effects of IAA on gut microbiota and its metabolism are still unknown, especially the association between gut microbiota and the metabolism and toxicity of IAA. In this study, female and male Sprague-Dawley rats were exposed to IAA at 0 and 16 mg/kg bw/day daily for 8 weeks by oral gavage. Results of 16S rRNA gene sequencing showed that IAA could alter the diversity, relative abundance and function of gut microbiota in female and male rats. IAA also increased the abundance of genes related to steroid hormone biosynthesis in the gut microbiota of male rats. Moreover, metabolomics profiling revealed that IAA could significantly disturb 6 and 13 metabolites in the feces of female and male rats, respectively. In female rats, the level of androstanediol increased in the IAA treatment group. These results were consistent with our previous findings, where IAA was identified as an androgen disruptor. Additionally, the perturbed gut microbiota and altered metabolites were correlated with each other. The results of this study indicated that IAA could disturb gut microbiota and its metabolism. These changes in gut microbiota and its metabolism were associated with the reproductive and developmental toxicity of IAA.


Subject(s)
Drinking Water , Gastrointestinal Microbiome , Animals , Disinfection/methods , Drinking Water/analysis , Female , Gastrointestinal Microbiome/genetics , Iodoacetic Acid/pharmacology , Male , RNA, Ribosomal, 16S/genetics , Rats , Rats, Sprague-Dawley
7.
Environ Sci Technol ; 55(6): 3827-3835, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33646749

ABSTRACT

Iodoacetic acid (IAA) is the most genotoxic iodinated disinfection byproduct known in drinking water. Previous studies have shown that IAA may be an endocrine disruptor. However, whether IAA has reproductive and developmental toxicity remains unclear. In this study, the reproductive and developmental toxicity of IAA was evaluated using a battery of in vitro and in vivo reproductive/developmental toxicity screening tests. The results of E-Screen, uterotrophic, and H295R steroidogenesis assays were negative. The Hershberger bioassay revealed that IAA could induce significant increases in absolute and relative weights of paired Cowper's glands. Moreover, there was an increasing trend in the relative weights of the ventral prostate. The micromass test showed that IAA could inhibit the differentiation of midbrain and limb bud cells. A reproductive/developmental toxicity screening test showed that IAA resulted in significantly increased relative weights of testis and seminal vesicles plus coagulating glands in parental male rats, with a dose-response relationship. IAA could not only induce head congestion in offspring but also decrease litter weight, viability index, and anogenital distance index of male pups on postnatal day 4. All these results indicated that IAA had reproductive and developmental toxicity.


Subject(s)
Drinking Water , Androgens , Animals , Disinfection , Drinking Water/analysis , Iodoacetic Acid , Male , Organ Size , Rats , Testis
8.
Sci Total Environ ; 770: 145277, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33515874

ABSTRACT

Halobenzoquinones (HBQs) are emerging unregulated drinking water disinfection byproducts (DBPs) that are more toxic than regulated DBPs. This study aimed to determine the distribution and formation of HBQs in drinking water from water treatment plants in China, compare their chronic cytotoxicity and their induction of chromosomal damage in Chinese hamster ovary cells, and analyze the correlation of HBQ toxicity with their physicochemical parameters. Two HBQs, 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) and 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ), were detected in finished water and tap water in China. The concentrations were in the ranges of <2.6-19.70 ng/L for 2,6-DCBQ and <0.38-1.8 ng/L for 2,6-DBBQ. Chemical oxygen demand and residual chlorine were positively correlated with HBQ formation. The HBQ concentration was lower in a drinking water treatment plant using chlorine dioxide. High Ca2+ in tap water decreased the HBQ level. The rank order of HBQ by cytotoxicity was 2-chloro-1,4-benzoquinone > 2,3-diiodo-1,4-benzoquinone > 2,6-diiodo-1,4-benzoquinone > 2,6-dibromo-1,4-benzoquinone > 2,5-dibromo-1,4-benzoquinone > 2,5-dichloro-1,4-benzoquinone > 2,6-dichloro-1,4-benzoquinone > tetrachloro-1,4-benzoquinone > 2,3,6-trichloro-1,4-benzoquinone, and for their genotoxicity, 2,5-dichloro-1,4-benzoquinone > 2,6-dichloro-1,4-benzoquinone > 2,3-diiodo-1,4-benzoquinone > 2,6-diiodo-1,4-benzoquinone > tetrachloro-1,4-benzoquinone > 2,5-dibromo-1,4-benzoquinone > 2,6-dibromo-1,4-benzoquinone > 2,3,6-trichloro-1,4-benzoquinone. The cytotoxicity of six dihalo-HBQs was negatively correlated with the octanol-water partition coefficient (r = -0.971, P < 0.05), molar refractivity (r = -0.956, P < 0.05), energy of the highest occupied molecular orbital (EHOMO) (r = -0.943, P < 0.05), and polar surface area (r = -0.829, P < 0.05). The genotoxicity of these three pairs of dihalo-HBQ isomers followed the same order as their EHOMO values. This study reveals the occurrence and formation of HBQs in drinking water in China and systematically evaluates the chromosomal damage caused by nine HBQs in mammalian cells.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Animals , CHO Cells , China , Cricetinae , Cricetulus , Disinfectants/toxicity , Disinfection , Halogenation , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
BMC Bioinformatics ; 18(1): 206, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28381244

ABSTRACT

BACKGROUND: Intrinsically unstructured or disordered proteins function via interacting with other molecules. Annotation of these binding sites is the first step for mapping functional impact of genetic variants in coding regions of human and other genomes, considering that a significant portion of eukaryotic genomes code for intrinsically disordered regions in proteins. RESULTS: DisBind (available at http://biophy.dzu.edu.cn/DisBind ) is a collection of experimentally supported binding sites in intrinsically disordered proteins and proteins with both structured and disordered regions. There are a total of 226 IDPs with functional site annotations. These IDPs contain 465 structured regions (ORs) and 428 IDRs according to annotation by DisProt. The database contains a total of 4232 binding residues (from UniProt and PDB structures) in which 2836 residues are in ORs and 1396 in IDRs. These binding sites are classified according to their interacting partners including proteins, RNA, DNA, metal ions and others with 2984, 258, 383, 350, and 262 annotated binding sites, respectively. Each entry contains site-specific annotations (structured regions, intrinsically disordered regions, and functional binding regions) that are experimentally supported according to PDB structures or annotations from UniProt. CONCLUSION: The searchable DisBind provides a reliable data resource for functional classification of intrinsically disordered proteins at the residue level.


Subject(s)
Intrinsically Disordered Proteins/metabolism , User-Computer Interface , Binding Sites , Databases, Factual , Humans , Internet , Intrinsically Disordered Proteins/chemistry , Protein Structure, Tertiary
10.
J Microbiol Biotechnol ; 26(10): 1736-1745, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27381338

ABSTRACT

The interactions of microbiota in the gut play an important role in promoting or maintaining the health of hosts. In this study, in order to investigate and compare the effects of dietary supplementation with Lactobacillus pentosus HC-2 (HC-2), Enterococcus faecium NRW-2, or the bacteria-free supernatant of a HC-2 culture on the bacterial composition of Litopenaeus vannamei, Illumina sequencing of the V1-V2 region of the 16S rRNA gene was used. The results showed that unique species exclusively existed in specific dietary groups, and the abundance of Actinobacteria was significantly increased in the intestinal bacterial community of shrimp fed with the bacteria-free supernatant of an HC-2 culture compared with the control. In addition, the histology of intestines of the shrimp from the four dietary groups was also described, but no obvious improvements in the intestinal histology were observed. The findings in this work will help to promote the understanding of the roles of intestinal bacteria in shrimps when fed with probiotics or probiotic supernatant.


Subject(s)
Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Intestines/microbiology , Penaeidae/microbiology , Probiotics , Animals , Bacteria/classification , Bacteria/genetics
11.
J Microbiol Biotechnol ; 24(1): 19-25, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24064915

ABSTRACT

An extracellular agarase was purified from Bacillus sp. BI-3, a thermophilic agar-degrading bacterium isolated from a hot spring in Indonesia. The purified agarase revealed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with an apparent molecular mass of 58 kDa. The optimum pH and temperature of the agarase were 6.4 and 70°C, respectively. The activity of the agarase was stable at high temperatures, and more than 50% activity was retained at 80°C for 15 min. Furthermore, the enzyme was stable in the pH range of 5.8-8.0, and more than 60% of the residual activity was retained. Significant activation of the agarase was observed in the presence of K(+), Na(+), Ca(2+), Mg(2+), and Sr(2+); on the other hand, Ba(2+), Zn(2+), Cu(2+), Mn(2+), Co(2+), Fe(2+), and EDTA inhibited or inactivated the enzyme activity. The components of the hydrolytic product analyzed by thin-layer chromatography showed that the agarase mainly produced neoagarobiose. This study is the first to present evidence of agarolytic activity in aerobic thermophilic bacteria.


Subject(s)
Bacillus/enzymology , Glycoside Hydrolases/isolation & purification , Glycoside Hydrolases/metabolism , Bacillus/isolation & purification , Disaccharides/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Activators/metabolism , Enzyme Inhibitors/metabolism , Enzyme Stability , Glycoside Hydrolases/chemistry , Hot Springs/microbiology , Hydrogen-Ion Concentration , Hydrolysis , Indonesia , Ions/metabolism , Metals/metabolism , Molecular Weight , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...