Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 15877, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37741910

ABSTRACT

In this study, we have opened a great route to fabricate a high-performance nanocomposite for various functional applications based on the composite of a natural stone. A clay sample (black shale (B.Sh)) was collected from the Abu-Tartur area in Egypt. The black shale was organically modified with organic materials in our laboratory, which is called organo-black shale (O-B.Sh). The samples were characterized by XRD, FTIR, SEM, and XRF. These techniques confirmed that the samples have multi-oxide phases with approximately SiO2 at 54.1%, Al2O3 at 24.73%, Fe2O3 at 6.02%, K2O at 1.12%, MgO at 1.09%, and Na2O of 0.09%, as calculated by XRF. The two samples were applied to the adsorption processes of the radioactive technetium materials, which have been used for the medical treatment of the cancer institute of Upper Egypt. The adsorption processes were performed at various concentrations of the radioactive material and various amounts of clay samples. The as-collected B.Sh sample showed an adsorption activity of 65%, however, the organically modified materials showed a high adsorption rate toward technetium reaches to 100% in a very short time and without any further process. The present collected materials are very promising to withdraw the radioactive materials from the saline solution to save human and environmental health. We believe these multi-compound composites may open a new approach for creating new fabric composites with high performance for various applications.

2.
Nanomaterials (Basel) ; 13(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37570540

ABSTRACT

ZnO is a potential candidate for providing an economic and environmentally friendly substitute for energy storage materials. Therefore, in this work, Fe-doped ZnO nanostructures prepared using the microwave irradiation procedure were investigated for structural, morphological, magnetic, electronic structural, specific surface area and electrochemical properties to be used as electrodes for supercapacitors. The X-ray diffraction, high-resolution transmission electron microscopy images, and selective-area electron diffraction pattern indicated that the nanocrystalline structures of Fe-doped ZnO were found to possess a hexagonal wurtzite structure. The effect of Fe doping in the ZnO matrix was observed on the lattice parameters, which were found to increase with the dopant concentration. Rods and a nanosheet-like morphology were observed via FESEM images. The ferromagnetic nature of samples is associated with the presence of bound magnetic polarons. The enhancement of saturation magnetization was observed due to Fe doping up to 3% in correspondence with the increase in the number of bound magnetic polarons with an Fe content of up to 3%. This behavior is observed as a result of the change in the oxidation state from +2 to +3, which was a consequence of Fe doping ranging from 3% to 5%. The electrode performance of Fe-doped ZnO nanostructures was studied using electrochemical measurements. The cyclic voltammetry (CV) results inferred that the specific capacitance increased with Fe doping and displayed a high specific capacitance of 286 F·g-1 at 10 mV/s for 3% Fe-doped ZnO nanostructures and decreased beyond that. Furthermore, the stability of the Zn0.97Fe0.03O electrode, which was examined by performing 2000 cycles, showed excellent cyclic stability (85.0% of value retained up to 2000 cycles) with the highest specific capacitance of 276.4 F·g-1, signifying its appropriateness as an electrode for energy storage applications.

3.
Nanomaterials (Basel) ; 13(14)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37513092

ABSTRACT

Herein, we have reported a novel strategy for improving the electrochemical performance of laser-induced graphene (LIG) supercapacitors (SCs). The LIG was prepared using a CO2 laser system. The polyimide polymer was the source material for the fabrication of the LIG. The doping process was performed in situ using the CO2 laser, which works as a rapid thermal treatment to combine graphene and NiO particles. NiO was used to improve the capacitance of graphene by combining an electric double-layer capacitor (EDLC) with the pseudo-capacitance effect. The high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy showed that the structure of the LIG is multilayered and waved. The HRTEM image proves the distribution of NiO fine particles with sizes of 5-10 nm into the graphene layers. The electrochemical performance of the as-prepared LIG was tested. The effect of the combination of the two materials (oxide and carbon) was investigated at different concentrations. The LIG showed a specific capacitance of 69 Fg-1, which increased up to 174 Fg-1 for the NiO-doped LIG. The stability investigations showed that the electrodes were very stable for more than 1000 cycles. This current study establishes an innovative method to improve the electrochemical properties of LIG.

4.
Materials (Basel) ; 16(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37374513

ABSTRACT

Magnetic nanoparticles of NiFe2O4 were successfully prepared by utilizing the sol-gel techniques. The prepared samples were investigated through various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), dielectric spectroscopy, DC magnetization and electrochemical measurements. XRD data analysed using Rietveld refinement procedure inferred that NiFe2O4 nanoparticles displayed a single-phase nature with face-centred cubic crystallinity with space group Fd-3m. Average crystallite size estimated using the XRD patterns was observed to be ~10 nm. The ring pattern observed in the selected area electron diffraction pattern (SAED) also confirmed the single-phase formation in NiFe2O4 nanoparticles. TEM micrographs confirmed the uniformly distributed nanoparticles with spherical shape and an average particle size of 9.7 nm. Raman spectroscopy showed characteristic bands corresponding to NiFe2O4 with a shift of the A1g mode, which may be due to possible development of oxygen vacancies. Dielectric constant, measured at different temperatures, increased with temperature and decreased with increase in frequency at all temperatures. The Havrilliak-Negami model used to study the dielectric spectroscopy indicated that a NiFe2O4 nanoparticles display non-Debye type relaxation. Jonscher's power law was utilized for the calculation of the exponent and DC conductivity. The exponent values clearly demonstrated the non-ohmic behaviour of NiFe2O4 nanoparticles. The dielectric constant of the nanoparticles was found to be >300, showing a normal dispersive behaviour. AC conductivity showed an increase with the rise in temperature with the highest value of 3.4 × 10-9 S/cm at 323 K. The M-H curves revealed the ferromagnetic behaviour of a NiFe2O4 nanoparticle. The ZFC and FC studies suggested a blocking temperature of ~64 K. The saturation of magnetization determined using the law of approach to saturation was ~61.4 emu/g at 10 K, corresponding to the magnetic anisotropy ~2.9 × 104 erg/cm3. Electrochemical studies showed that a specific capacitance of ~600 F g-1 was observed from the cyclic voltammetry and galvanostatic charge-discharge, which suggested its utilization as a potential electrode for supercapacitor applications.

5.
Nanomaterials (Basel) ; 13(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37368299

ABSTRACT

To meet the growing demand for efficient and sustainable power sources, it is crucial to develop high-performance energy storage systems. Additionally, they should be cost-effective and able to operate without any detrimental environmental side effects. In this study, rice husk-activated carbon (RHAC), which is known for its abundance, low cost, and excellent electrochemical performance, was combined with MnFe2O4 nanostructures to improve the overall capacitance of asymmetric supercapacitors (ASCs) and their energy density. A series of activation and carbonization steps are involved in the fabrication process for RHAC from rice husk. Furthermore, the BET surface area for RHAC was determined to be 980 m2 g-1 and superior porosities (average pore diameter of 7.2 nm) provide abundant active sites for charge storage. Additionally, MnFe2O4 nanostructures were effective pseudocapacitive electrode materials due to their combined Faradic and non-Faradic capacitances. In order to assess the electrochemical performance of ASCs extensively, several characterization techniques were employed, including galvanostatic charge -discharge, cyclic voltammetry, and electrochemical impedance spectroscopy. Comparatively, the ASC demonstrated a maximum specific capacitance of ~420 F/g at a current density of 0.5 A/g. The as-fabricated ASC possesses remarkable electrochemical characteristics, including high specific capacitance, superior rate capability, and long-term cycle stability. The developed asymmetric configuration retained 98% of its capacitance even after 12,000 cycles performed at a current density of 6A/g, demonstrating its stability and reliability for supercapacitors. The present study demonstrates the potential of synergistic combinations of RHAC and MnFe2O4 nanostructures in improving supercapacitor performance, as well as providing a sustainable method of using agricultural waste for energy storage.

6.
Materials (Basel) ; 16(10)2023 May 14.
Article in English | MEDLINE | ID: mdl-37241347

ABSTRACT

This work comprehensively studies both the photocatalytic degradation and the adsorption process of Congo red dye on the surface of a mixed-phase copper oxide-graphene heterostructure nanocomposite. Laser-induced pristine graphene and graphene doped with different CuO concentrations were used to study these effects. Raman spectra showed a shift in the D and G bands of the graphene due to incorporating copper phases into the laser-induced graphene. The XRD confirmed that the laser beam was able to reduce the CuO phase to Cu2O and Cu phases, which were embedded into the graphene. The results elucidate incorporating Cu2O molecules and atoms into the graphene lattice. The production of disordered graphene and the mixed phases of oxides and graphene were validated by the Raman spectra. It is noted from the spectra that the D site changed significantly after the addition of doping, which indicates the incorporation of Cu2O in the graphene. The impact of the graphene content was examined with 0.5, 1.0, and 2.0 mL of CuO. The findings of the photocatalysis and adsorption studies showed an improvement in the heterojunction of copper oxide and graphene, but a significant improvement was noticed with the addition of graphene with CuO. The outcomes demonstrated the compound's potential for photocatalytic use in the degradation of Congo red.

7.
Materials (Basel) ; 16(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36984170

ABSTRACT

CeXO2 (X: Fe, Mn) nanoparticles, synthesized using the coprecipitation route, were investigated for their structural, morphological, magnetic, and electrochemical properties using X-ray diffraction (XRD), field emission transmission electron microscopy (FE-TEM), dc magnetization, and cyclic voltammetry methods. The single-phase formation of CeO2 nanoparticles with FCC fluorite structure was confirmed by the Rietveld refinement, indicating the successful incorporation of Fe and Mn in the CeO2 matrix with the reduced dimensions and band gap values. The Raman analysis supported the lowest band gap of Fe-doped CeO2 on account of oxygen non-stoichiometry. The samples exhibited weak room temperature ferromagnetism, which was found to be enhanced in the Fe doped CeO2. The NEXAFS analysis supported the results by revealing the oxidation state of Fe to be Fe2+/Fe3+ in Fe-doped CeO2 nanoparticles. Further, the room temperature electrochemical performance of CeXO2 (X: Fe, Mn) nanoparticles was measured with a scan rate of 10 mV s-1 using 1 M KCL electrolyte, which showed that the Ce0.95Fe0.05O2 electrode revealed excellent performance with a specific capacitance of 945 FÖ¼·g-1 for the application in energy storage devices.

8.
Micromachines (Basel) ; 14(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677253

ABSTRACT

Porous carbons are highly attractive and demanding materials which could be prepared using biomass waste; thus, they are promising for enhanced electrochemical capacitive performance in capacitors and cycling efficiency in Li-ion batteries. Herein, biomass (rice husk)-derived activated carbon was synthesized via a facile chemical route and used as anode materials for Li-ion batteries. Various characterization techniques were used to study the structural and morphological properties of the prepared activated carbon. The prepared activated carbon possessed a carbon structure with a certain degree of amorphousness. The morphology of the activated carbon was of spherical shape with a particle size of ~40-90 nm. Raman studies revealed the characteristic peaks of carbon present in the prepared activated carbon. The electrochemical studies evaluated for the fabricated coin cell with the activated carbon anode showed that the cell delivered a discharge capacity of ~321 mAhg-1 at a current density of 100 mAg-1 for the first cycle, and maintained a capacity of ~253 mAhg-1 for 400 cycles. The capacity retention was found to be higher (~81%) with 92.3% coulombic efficiency even after 400 cycles, which showed excellent cyclic reversibility and stability compared to commercial activated carbon. These results allow the waste biomass-derived anode to overcome the problem of cyclic stability and capacity performance. This study provides an insight for the fabrication of anodes from the rice husk which can be redirected into creating valuable renewable energy storage devices in the future, and the product could be a socially and ethically acceptable product.

9.
Nanomaterials (Basel) ; 14(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38202547

ABSTRACT

Water pollution has emerged as a major challenge for the scientific community because of the rapid expansion of the population and the industrial sector in the world. The current study focuses on introducing a new track for designing new optical nanocomposites for purifying water in addition to providing a new additive for building new nanohybrids. These targets were achieved through building a ternary system of Co/Ti/Zn nanocomposites and nanolayered structures. The Co/Ti/Zn nanolayered structures were prepared and intercalated by different kinds of organic acids: monocarboxylic and dicarboxylic acids. Long chains of organic acids were used to construct series of organic-inorganic nanohybrids. X-ray diffraction, thermal analyses, Fourier Transform Infrared spectroscopy, and scanning electron microscopy confirmed the formation of nanolayered structures and nanohybrids. The optical properties of the nanolayered structure showed that the Co/Ti/Zn LDH became photo-active compared with the usual Al/Zn LDH because of the reduction in the band gap energy from 5.3 eV to 3.3 eV. After thermal treatment, a highly photo-active nanocomposite was produced through observing more reduction for the band gap energy to become 2.8 eV. In addition, the dye of Acid Green 1 completely decomposed and converted to water and carbon dioxide during 17 min of UV radiation by the dual Co/Ti-doped zinc oxide nanocomposite. In addition, the kinetic study confirmed that the high optical activity of the dual Co/Ti-doped zinc oxide nanocomposite accelerated the degradation of the green dyes. Finally, from these results it could be concluded that designing effective nanocomposite for purification of water was accomplished through converting 2D nanolayered structures to a 3D porous structure of Ni/Ti/Zn nanocomposites. In addition, a new additive was achieved for heterostructured hybrids through building new Co/Ti/Zn/organic nanohybrids.

10.
Materials (Basel) ; 15(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431441

ABSTRACT

Magnetic nanostructures of CoFe2O4 were synthesized via a microwave-assisted hydrothermal route. The prepared nanostructures were investigated using X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), selective area electron diffraction (SAED) pattern, DC magnetization, and dielectric spectroscopy measurements. The crystal structure studied using HR-TEM, SAED, and XRD patterns revealed that the synthesized nanostructures had a single-phase nature and ruled out the possibility of any secondary phase. The lattice parameters and unit cell volume determined from the XRD data were found to be 8.4821 Å and 583.88 Å3. The average crystallite size (~7.0 nm) was determined using Scherrer's equation. The FE-SEM and TEM micrographs revealed that the prepared nanostructures had a spherical shape morphology. The EDX results showed that the major elements present in the samples were Co, Fe, and O. The magnetization (M) versus temperature (T) measurements specified that the CoFe2O4 nanostructures showed ferromagnetic ordering at room temperature. The blocking temperature (TB) determined using the M-T curve was found to be 315 K. The magnetic hysteresis (M-H) loop of the CoFe2O4 nanostructures recorded at different temperatures showed the ferromagnetic behavior of the CoFe2O4 nanostructures at temperatures of 200 K and 300 K, and a superparamagnetic behavior at 350 K. The dielectric spectroscopy studies revealed a dielectric constant (ε') and loss tangent (tanδ) decrease with the increase in the frequency, as well as demonstrating a normal dispersion behavior, which is due to the Maxwell-Wagner type of interfacial polarization. The values of ε' and tanδ were observed to increase with the increase in the temperature.

11.
Materials (Basel) ; 15(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36431669

ABSTRACT

In the present work, Cu-doped ZnO nanostructures (Cu% = 0, 1, 5) have been prepared using microwave-assisted chemical route synthesis. The synthesized nanostructures were investigated through structural, morphological, optical, and magnetic characterizations. The results of the X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), and selective area electron diffraction (SAED) patterns confirmed that all of the samples exhibit the single-phase polycrystalline hexagonal crystal structure. The XRD results infer a decrease in the lattice parameters (a/c) by increasing the Cu% doping into ZnO. The field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray (EDX) spectroscopic measurements revealed the formation of nanostructures, showing the major elemental presence of Zn and O in the samples. The photoluminescence (PL) spectra exhibited photoemission in the UV and blue-green regions. With the increase in the Cu%, the photoemission in the UV region is reduced, while it is enhanced in the blue-green region. Raman spectra of the Cu-doped ZnO nanostructures displayed a blue shift of the E2High mode and an increase in the peak intensity of E1(LO), indicating the doping of Cu ion in the ZnO lattice. The dc magnetization measurements demonstrated the ferromagnetic behavior of all of the samples with an enhanced ferromagnetic character with increasing Cu%.

12.
Biosensors (Basel) ; 12(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36290993

ABSTRACT

Herein, we present an electrocatalyst constructed by zinc oxide hexagonal prisms/phosphorus-doped carbon nitride wrinkles (ZnO HPs/P-CN) prepared via a facile sonochemical method towards the detection of nitrofurantoin (NF). The ZnO HPs/P-CN-sensing platform showed amplified response and low-peak potential compared with other electrodes. The exceptional electrochemical performance could be credited to ideal architecture, rapid electron/charge transfer, good conductivity, and abundant active sites in the ZnO HPs/P-CN composite. Resulting from these merits, the ZnO HPs/P-CN-modified electrode delivered rapid response (2 s), a low detection limit (2 nM), good linear range (0.01-111 µM), high sensitivity (4.62 µA µM-1 cm2), better selectivity, decent stability (±97.6%), and reproducibility towards electrochemical detection of NF. We further demonstrated the feasibility of the proposed ZnO HPs/P-CN sensor for detecting NF in samples of water and human urine. All the above features make our proposed ZnO HPs/P-CN sensor a most promising probe for detecting NF in natural samples.


Subject(s)
Zinc Oxide , Humans , Zinc Oxide/chemistry , Electrochemical Techniques/methods , Nitrofurantoin , Phosphorus , Reproducibility of Results , Electrodes , Water , Carbon/chemistry
13.
Nanomaterials (Basel) ; 12(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36014614

ABSTRACT

Due to an escalating increase in multiple antibiotic resistance among bacteria, novel nanomaterials with antimicrobial properties are being developed to prevent infectious diseases caused by bacteria that are common in wastewater and the environment. A series of nanolayered structures and nanohybrids were prepared and modified by several methods including an ultrasonic technique, intercalation reactions of fatty acids, and carbon nanotubes, in addition to creating new phases based on zinc and aluminum. The nanomaterials prepared were used against a group of microorganisms, including E. coli, S. aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. Experimental results revealed that a nanohybrid based on carbon nanotubes and fatty acids showed significant antimicrobial activity against E. coli, and can be implemented in wastewater treatment. Similar behavior was observed for a nanolayered structure which was prepared using ultrasonic waves. For the other microorganisms, a nanolayered structure combined with carbon nanotubes showed a significant and clear inhibitory effect on S. aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. It is concluded that the nanolayered structures and nanohybrids, which can be modified at low cost with high productivity, using simple operations and straightforward to use equipment, can be considered good candidates for preventing infectious disease and inhibiting the spread of bacteria, especially those that are commonly found in wastewater and the environment.

14.
Materials (Basel) ; 15(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35806564

ABSTRACT

This paper focuses on the fabrication of defective-induced nanotubes via the catalytic chemical vapor deposition method and the investigation of their properties toward gas sensing. We have developed defective multi-walled carbon nanotubes with porous and crystalline structures. The catalyst layer used in CNTs' growth here was based on 18 and 24 nm of Ni, and 5 nm of Cr deposited by the dc-sputtering technique. The CNTs' defects were characterized by observing the low graphite peak (G-band) and higher defect peaks (D-band) in the Raman spectrum. The defectives sites are the main source of the sensitivity of materials toward different gases. Thus, the current product was used for sensing devices. The device was subjected to various gases such as NO, NO2, CO, acetone, and ethanol at a low operating temperature of 30 °C and a concentration of 50 ppm. The sensor was observed to be less sensitive to most gas while showing the highest response towards ethanol gas. The sensor showed the highest response of 8.8% toward ethanol at 30 °C of 50 ppm, and a low response of 2.8% at 5 ppm, which was investigated here. The signal repeatability of the present sensor showed its capability to detect ethanol at much lower concentrations and at very low operating temperatures, resulting in reliability and saving power consumption. The gas sensing mechanism of direct interaction between the gas molecules and nanotube surface was considered the main. We have also proposed a sensing mechanism based on Coulomb dipole interaction for the physical adsorption of gas molecules on the surface.

15.
Materials (Basel) ; 15(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35806826

ABSTRACT

(Nb5+, Si4+) co-doped TiO2 (NSTO) ceramics with the compositions (Nb0.5Si0.5)xTi1−xO2, x = 0, 0.025, 0.050 and 0.1 were prepared with a solid-state reaction technique. X-ray diffraction (XRD) patterns and Raman spectra confirmed that the tetragonal rutile is the main phase in all the ceramics. Additionally, XRD revealed the presence of a secondary phase of SiO2 in the co-doped ceramics. Impedance spectroscopy analysis showed two contributions, which correspond to the responses of grain and grain-boundary. All the (Nb, Si) co-doped TiO2 showed improved dielectric performance in the high frequency range (>103 Hz). The sample (Nb0.5Si0.5)0.025Ti0.975O2 showed the best dielectric performance in terms of higher relative permittivity (5.5 × 104) and lower dielectric loss (0.18), at 10 kHz and 300 K, compared to pure TiO2 (1.1 × 103, 0.34). The colossal permittivity of NSTO ceramics is attributed to an internal barrier layer capacitance (IBLC) effect, formed by insulating grain-boundaries and semiconductor grains in the ceramics.

16.
RSC Adv ; 12(28): 18282-18295, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35800303

ABSTRACT

The present study describes a new strategy for modifying the structure of zinc oxide for removing colored pollutants from water after a few minutes of light irradiation. In this context, the magnetic nanocomposite was combined with the nanolayers of Al/Zn to build inorganic-magnetic nanohybrids. The long chains of hydrocarbons of stearic acid have been used as pillars to widen interlayered spacing among the nanolayers to build organic-magnetic-inorganic nanohybrids. These nanohybrids were used as sources for designing zinc oxide nanohybrids to purify water from the green dyes using UV-light. The optical measurements showed that the nanohybrid structure of zinc oxide led to a clear reduction in the band gap energy from 3.30 eV to 2.75 eV to be more effective. In addition, a complete removal of naphthol green B was achieved after 15 min in the presence of zinc oxide nanohybrid using UV-light. The kinetic study showed that the reaction rate for the photocatalytic degradation of the pollutants was faster than that of the conventional photocatalysts. Finally, this strategy for designing photoactive nanohybrids led to positive results for overcoming environment- and water-related problems using the fast technique for purifying water.

17.
Materials (Basel) ; 15(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744177

ABSTRACT

BiFe1−xCrxO3, (0 ≤ x ≤ 10) nanoparticles were prepared through the sol−gel technique. The synthesized nanoparticles were characterized using various techniques, viz., X-ray diffraction, high-resolution field emission scanning electron microscopy (HRFESEM), energy dispersive spectroscopy (EDS), UV−Vis absorption spectroscopy, photoluminescence (PL), dc magnetization, near-edge X-ray absorption spectroscopy (NEXAFS) and cyclic voltammetry (CV) measurements, to investigate the structural, morphological, optical, magnetic and electrochemical properties. The structural analysis showed the formation of BiFeO3 with rhombohedral (R3c) as the primary phase and Bi25FeO39 as the secondary phase. The secondary phase percentage was found to reduce with increasing Cr content, along with reductions in crystallite sizes, lattice parameters and enhancement in strain. Nearly spherical shape morphology was observed via HRFESEM with Bi, Fe, Cr and O as the major contributing elements. The bandgap reduced from 1.91 to 1.74 eV with the increase in Cr concentration, and PL spectra revealed emissions in violet, blue and green regions. The investigation of magnetic field (H)-dependent magnetization (M) indicated a significant effect of Cr substitution on the magnetic properties of the nanoparticles. The ferromagnetic character of the samples was found to increase with the increase in the Cr concentration and the increase in the saturation magnetization. The Fe (+3/+4) was dissolved in mixed-valence states, as found through NEXAFS analysis. Electrochemical studies showed that 5%-Cr-doped BFO electrode demonstrated outstanding performance for supercapacitors through a specific capacitance of 421 F g−1 measured with a scan rate of 10 mV s−1. It also demonstrated remarkable cyclic stability through capacitance retention of >78% for 2000 cycles.

18.
Materials (Basel) ; 15(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744178

ABSTRACT

The nanoparticles of CeO2, Ce0.98Fe0.02O2, and Ce0.78Fe0.02Cu0.20O2 were synthesized using the co-precipitation-synthesis technique. The effect of co-doping of Fe and Cu on structural, optical, and magnetic properties as well as specific capacitance have been studied using X-ray diffraction (XRD), scanning-electron microscopy (SEM), UV-visible spectroscopy, Raman spectroscopy, dc magnetization, and electrochemical measurements at room temperature. The results of the XRD analysis infer that all the samples have a single-phase nature and exclude the formation of any extra phase. Particle size has been found to reduce as a result of doping and co-doping. The smallest particle size was obtained to be 5.59 nm for Ce0.78Fe0.02Cu0.20O2. The particles show a spherical-shape morphology. Raman active modes, corresponding to CeO2, were observed in the Raman spectra, with noticeable shifting with doping and co-doping indicating the presence of defect states. The bandgap, calculated using UV-Vis spectroscopy, showed relatively low bandgap energy (1.7 eV). The dc magnetization results indicate the enhancement of the magnetic moment in the samples, with doping and co-doping. The highest value of saturation magnetization (1.3 × 10-2 emu/g) has been found for Ce0.78Fe0.02Cu0.20O2 nanoparticles. The electrochemical behavior studied using cyclic-voltammetry (CV) measurements showed that the Ce0.98Fe0.02O2 electrode exhibits superior-specific capacitance (~532 F g-1) along with capacitance retention of ~94% for 1000 cycles.

19.
Molecules ; 27(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35744799

ABSTRACT

Energy and water related problems have attracted strong attention from scientists across the world because of deficient energy and water pollution. Following this line, new strategy depended on preparing nanolayers of Al/Zn and magnetic nanoparticles of cobalt iron oxides nanocomposite in addition to long chains of hydrocarbons of stearic acid to be used as roofs, fillers and pillars; respectively, to design optical-active nanohybrids in sunlight for removing the colored pollutants from water in few minutes. By using long chains of hydrocarbons of stearic acid, X-ray diffraction (XRD) results and TEM images showed expansion of the interlayered spacing from 0.76 nm to 2.02 nm and insertion of magnetic nanoparticles among the nanolayers of Al/Zn. The optical properties and activities showed that the nanohybrid structure based on zinc oxide led to clear reduction of the band gap energy from 3.3 eV to 2.75 eV to be effective in sunlight. Photocatalytic degradation of the dye of acid green 1 confirmed the high activity of the prepared zinc oxide nanohybrids because of a complete removal of the dye after ten minutes in sunlight. Finally, this strategy was effective for producing photo-active nanohybrids for using renewable and non-polluting energy for purifying water.


Subject(s)
Nanocomposites , Zinc Oxide , Catalysis , Magnetics , Nanocomposites/chemistry , Sunlight , Water
20.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35745344

ABSTRACT

Water pollution and deficient energy are the main challenges for the scientific society across the world. In this trend, new approaches include designing zinc oxide nanohybrids to be very active in sunlight. In this line, organic and magnetic species intercalate among the nanolayers of Al/Zn to build inorganic-magnetic-organic nanohybrid structures. A series of nanolayered and nanohybrid structures have been prepared through intercalating very fine particles of cobalt iron oxide nanocomposites and long chains of organic fatty acids such as n-capric acid and stearic acid inside the nanolayered structures of Al/Zn. By thermal treatment, zinc oxide nanohybrids have been prepared and used for purifying water from colored pollutants using solar energy. The optical measurements have shown that the nanohybrid structure of zinc oxide leads to a clear reduction of band gap energy from 3.30 eV to 2.60 eV to be effective in sunlight. In this line, a complete removal of the colored pollutants (naphthol green B) was achieved after ten minutes in the presence of zinc oxide nanohybrid and sunlight. Finally, this new approach for designing photoactive nanohybrids leads to positive results for facing the energy- and water-related problems through using renewable and non-polluting energy for purifying water.

SELECTION OF CITATIONS
SEARCH DETAIL
...