Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Med Chem ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500288

ABSTRACT

BACKGROUND: Thiazolidine-2,4-dione (2,4-TZD) is a flexible pharmacophore and a privileged platform and contains a five-membered ring with a 2-oxygen atom with double bond 2,4- position and one nitrogen atom as well as sulphur containing in the heterocyclic compound. A famous electron-rich nitrogen transporter combines invigorating electronic properties with the prospective for elemental applications. Thiazolidine-2,4-dione analogues have been synthesized using a variety of methods, all of which have shown to have a strong biological effect. OBJECTIVE: The study of the biological activity of Thiazolidine-2,4-dione derivatives has been a fascinating field of pharmaceutical chemistry and has many purposes. This derivative described in the literature between 1995 to 2023 was the focus of this study. Thiazolidine-2,4-diones have been discussed in terms of their introduction, general method, synthetic scheme and antidiabetic significance in the current review. CONCLUSION: Thiazolidine-2,4-diones are well-known heterocyclic compounds. The synthesis of Thiazolidine-2,4-diones has been described using a variety of methods. Antidiabetic activity has been discovered in several Thiazolidine-2,4-dione derivatives, which enhance further research. The use of Thiazolidine-2,4-diones to treat antidiabetics has piqued researchers' interest in learn-ing more about Thiazolidine-2,4-diones.

2.
Curr Top Med Chem ; 23(25): 2394-2415, 2023.
Article in English | MEDLINE | ID: mdl-37828679

ABSTRACT

BACKGROUND: Piperine is a natural compound found in black pepper that has been traditionally used for various therapeutic purposes. In the ayurvedic system of medication there is a lot of evidence which shows that the piperine is widely used for different therapeutic purpose. In recent years, there has been an increasing interest in the pharmacological and therapeutic potential of piperine and its derivatives in modern medicine. In order to increase the bioavailability and therapeutic effectiveness of piperine and its analogs, researchers have been looking at various extraction methods and synthesis approaches. Many studies have been conducted in this area because of the promise of piperine as a natural substitute for synthetic medications. OBJECTIVES: The objective of this review article is to provide an up-to-date analysis of the literature on the synthesis of piperine analogs, including their extraction techniques and various biological activities such as antihypertensive, antidiabetic, insecticidal, antimicrobial, and antibiotic effects. Additionally, the review aims to discuss the potential of piperine in modern medicine, given its traditional use in various medicinal systems such as Ayurveda, Siddha, and Unani. The article also provides a comprehensive analysis of the plant from which piperine is derived. CONCLUSION: This review article provides a thorough examination of piperine and the source plant. The best extraction technique for the extraction of piperine and the synthesis of its analogs with various biological activities, including antihypertensive, antidiabetic, insecticidal, antibacterial, and antibiotic properties, are covered in the article. This review aims to provide an updated analysis of the literature on the synthesis of piperine analogs.


Subject(s)
Alkaloids , Antihypertensive Agents , Alkaloids/pharmacology , Polyunsaturated Alkamides/pharmacology , Benzodioxoles/pharmacology , Hypoglycemic Agents , Anti-Bacterial Agents
3.
Med Chem ; 19(8): 785-812, 2023.
Article in English | MEDLINE | ID: mdl-36852806

ABSTRACT

Quinoline has recently become an important heterocyclic molecule due to its numerous industrial and synthetic organic chemistry applications. Quinoline derivatives have been used in clinical trials for a variety of medical conditions that causes cancer. The present literature study is composed of recent progress (mainly from 2010 to the present) in the production of novel quinoline derivatives as potential anti-cancer agents, as well as their structure-activity relationship, which will provide insight into the development of more active quinoline hybrids in the future. The present review comprises the synthetic protocols of biologically active Quinoline analogs with their structure-activity relationship studies as anti-cancer agents, which provide depth view of work done on quinoline derivatives to the medicinal chemist for future research.


Subject(s)
Antineoplastic Agents , Neoplasms , Quinolines , Humans , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Structure-Activity Relationship , Quinolines/chemistry
4.
Curr Org Synth ; 20(7): 758-787, 2023.
Article in English | MEDLINE | ID: mdl-36200203

ABSTRACT

Due to their diverse applications in industrial and synthetic organic chemistry, quinoline and 1,3,4-oxadiazole have become important heterocyclic compounds. Quinoline and 1,3,4- oxadiazole compounds have been developed for various medical conditions such as anti-cancer, anti-bacterial, anti-fungal, antimalarial, antioxidants, anti-HIV, anticonvulsant, antiviral, etc. The current review includes synthetic protocols for biologically active 1,3,4-oxadiazole incorporating quinoline hybrids with their structure-activity relationship to explore work (Mainly from 2010 to 2021) based on 1,3,4-oxadiazole-quinoline hybrids to the medicinal chemist for further research in the development of the molecule.


Subject(s)
Antimalarials , Quinolines , Structure-Activity Relationship , Antimalarials/pharmacology , Antimalarials/chemistry , Oxadiazoles/pharmacology , Oxadiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...