Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 2247, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145160

ABSTRACT

Platypuses (Ornithorhynchus anatinus) forage for macroinvertebrate prey exclusively in freshwater habitats. Because food material in their faeces is well digested and mostly unidentifiable, previous dietary studies have relied on cheek pouch assessments and stable isotope analysis. Given DNA metabarcoding can identify species composition from only fragments of genetic material, we investigated its effectiveness in analysing the diet of platypuses, and to assess variation across seasons and sexes. Of the 18 orders and 60 families identified, Ephemeroptera and Diptera were the most prevalent orders, detected in 100% of samples, followed by Trichoptera, Pulmonata, and Odonata (86.21% of samples). Caenidae and Chironomidae were the most common families. Diptera had a high average DNA read, suggesting it is an important dietary component that may have been underestimated in previous studies. We found no variation in diet between sexes and only minimal changes between seasons. DNA metabarcoding proved to be a highly useful tool for assessing platypus diet, improving prey identification compared to cheek pouch analysis, which can underestimate soft-bodied organisms, and stable isotope analysis which cannot distinguish all taxa isotopically. This will be a useful tool for investigating how platypus prey diversity is impacted by habitat degradation as a result of anthropogenic stressors.


Subject(s)
DNA Barcoding, Taxonomic , Diet , Platypus , Animals , Female , Male
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117871, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31839576

ABSTRACT

Dissolved organic matter (DOM) within freshwaters is essential for broad ecosystem function. The concentration and type of DOM within rivers depends on the relative contributions of allochthonous sources and the production and consumption of DOM by microbes. In this work we have examined the temporal patterns in DOM quality and productivity in three lowland rivers in dryland Australia using fluorescence excitation emission scans. We assessed the production and consumption of DOM within light and dark bottle assays to quantify the relative contribution of bacteria and algae to the DOM pool and simultaneously assessed whether the systems were autotrophic or heterotrophic. DOM varied temporally within the three river systems over the course of the study period. Characterisation of DOM within light and dark bottles following a 6-hour incubation revealed microbial consumption of a humic-like component and production of protein-like components similar in nature to the amino acids tryptophan and tyrosine. The lack of a significant difference in DOM quality between the light and dark bottles indicated that the protein-like DOM is likely derived from bacterial activity. Respiration was shown to be higher than gross primary production in both whole river and bottle assays, yielding negative net production values and demonstrating that these rivers were predominately heterotrophic. Our work suggests that bacterial metabolism of DOM may be a significant contributor to the production of protein-like components within heterotrophic freshwater systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...