Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
World J Microbiol Biotechnol ; 40(6): 183, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722449

ABSTRACT

Heterologous production of proteins in Escherichia coli has raised several challenges including soluble production of target proteins, high levels of expression and purification. Fusion tags can serve as the important tools to overcome these challenges. SUMO (small ubiquitin-related modifier) is one of these tags whose fusion to native protein sequence can enhance its solubility and stability. In current research, a simple, efficient and cost-effective method is being discussed for the construction of pET28a-SUMO vector. In order to improve the stability and activity of lysophospholipase from Pyrococcus abyssi (Pa-LPL), a 6xHis-SUMO tag was fused to N-terminal of Pa-LPL by using pET28a-SUMO vector. Recombinant SUMO-fused enzyme (6 H-S-PaLPL) works optimally at 35 °C and pH 6.5 with remarkable thermostability at 35-95 °C. Thermo-inactivation kinetics of 6 H-S-PaLPL were also studied at 35-95 °C with first order rate constant (kIN) of 5.58 × 10- 2 h-1 and half-life of 12 ± 0 h at 95 °C. Km and Vmax for the hydrolysis of 4-nitrophenyl butyrate were calculated to be 2 ± 0.015 mM and 3882 ± 22.368 U/mg, respectively. 2.4-fold increase in Vmax of Pa-LPL was observed after fusion of 6xHis-SUMO tag to its N-terminal. It is the first report on the utilization of SUMO fusion tag to enhance the overall stability and activity of Pa-LPL. Fusion of 6xHis-SUMO tag not only aided in the purification process but also played a crucial role in increasing the thermostability and activity of the enzyme. SUMO-fused enzyme, thus generated, can serve as an important candidate for degumming of vegetable oils at industrial scale.


Subject(s)
Enzyme Stability , Escherichia coli , Pyrococcus abyssi , Recombinant Fusion Proteins , Temperature , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Kinetics , Pyrococcus abyssi/genetics , Pyrococcus abyssi/enzymology , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Genetic Vectors/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , SUMO-1 Protein/chemistry , Cloning, Molecular , Solubility
2.
Carbohydr Res ; 539: 109122, 2024 May.
Article in English | MEDLINE | ID: mdl-38657354

ABSTRACT

The genomic screening of hyper-thermophilic Pyrococcus abyssi showed uncharacterized novel α-amylase sequences. Homology modelling analysis revealed that the α-amylase from P. abyssi consists of an N-terminal GH57 catalytic domain, α-amylase central, and C-terminal domain. Current studies emphasize in-silico structural and functional analysis, recombinant expression, characterization, structural studies through CD spectroscopy, and ligand binding studies of the novel α-amylase from P. abyssi. The soluble expression of PaAFG was observed in the E. coli Rosetta™ (DE3) pLysS strain upon incubation overnight at 18 °C in an orbital shaker. The optimum temperature and pH of the PaAFG were observed at 90 °C in 50 mM phosphate buffer pH 6. The Km value for PaAFG against wheat starch was determined as 0.20 ± 0.053 mg while the corresponding Vmax value was 25.00 ± 0.67 µmol min-1 mg-1 in the presence of 2 mM CaCl2 and 12.5 % glycerol. The temperature ramping experiments through CD spectroscopy reveal no significant change in the secondary structures and positive and negative ellipticities of the CD spectra showing the proper folding and optimal temperature of PaAFG protein. The RMSD and RMSF of the PaAFG enzyme determined through molecular dynamic simulation show the significant protein's stability and mobility. The soluble production, thermostability and broad substrate specificity make this enzyme a promising choice for various industrial applications.


Subject(s)
Pyrococcus abyssi , Starch , alpha-Amylases , alpha-Amylases/metabolism , alpha-Amylases/chemistry , alpha-Amylases/genetics , Enzyme Stability , Hydrogen-Ion Concentration , Models, Molecular , Pyrococcus abyssi/enzymology , Starch/metabolism , Starch/chemistry , Temperature
3.
Int J Biol Macromol ; 266(Pt 2): 131310, 2024 May.
Article in English | MEDLINE | ID: mdl-38569986

ABSTRACT

Alpha amylase belonging to starch hydrolyzing enzymes has significant contributions to different industrial processes. The enzyme production through recombinant DNA technology faces certain challenges related to their expression, solubility and purification, which can be overcome through fusion tags. This study explored the influence of SUMO, a protein tag reported to enhance the solubility and stability of target proteins when fused to the N-terminal of the catalytic domain of amylase from Pyrococcus abyssi (PaAD). The insoluble expression of PaAD in E. coli was overcome when the enzyme was expressed in a fusion state (S-PaAD) and culture was cultivated at 18 °C. Moreover, the activity of S-PaAD increased by 1.5-fold as compared to that of PaAD. The ligand binding and enzyme activity assays against different substrates demonstrated that it was more active against 1 % glycogen and amylopectin. The analysis of the hydrolysates through HPLC demonstrated that the enzyme activity is mainly amylolytic, producing longer oligosaccharides as the major end product. The secondary structure analyses by temperature ramping in CD spectroscopy and MD simulation demonstrated the enzymes in the free, as well as fusion state, were stable at 90 °C. The soluble production, thermostability and broad substrate specificity make this enzyme a promising choice for various foods, feed, textiles, detergents, pharmaceuticals, and many industrial applications.


Subject(s)
Catalytic Domain , Enzyme Stability , Pyrococcus abyssi , Recombinant Fusion Proteins , Solubility , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Substrate Specificity , Pyrococcus abyssi/enzymology , Amylases/chemistry , Amylases/metabolism , Amylases/genetics , Hydrolysis , Escherichia coli/genetics , Temperature , Starch/chemistry , Starch/metabolism
4.
Int J Biol Macromol ; 259(Pt 2): 129345, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219941

ABSTRACT

Genome sequence of Pyrococcus abyssi DSM25543 contains a coding sequence (PAB_RS01410) for α/ß hydrolase (WP_010867387.1). Structural analysis revealed the presence of a consensus motif GXSXG and a highly conserved catalytic triad in the amino acid sequence of α/ß hydrolase that were characteristic features of lysophospholipases. A putative lysophospholipase from P. abyssi with its potential applications in oil degumming and starch processing was heterologously produced in E. coli Rosetta (DE3) pLysS in soluble form followed by its purification and characterization. The recombinant enzyme was found to be active at temperature of 40-90 °C and pH 5.5-7.0. However, the enzyme exhibited its optimum activity at 65 °C and pH 6.5. None of the metal ions (Mn2+, Mg2+, Ni2+, Cu2+, Fe2+, Co2+, Zn2+ and Ca2+) being tested had stimulatory effect on lysophospholipase activity. Km and Vmax for hydrolysis of 4-nitrophenyl butyrate were calculated to be 1 ± 0.089 mM and 1637 ± 24.434 U/mg, respectively. It is the first report on the soluble production and characterization of recombinant lysophospholipase from P. abyssi which exhibits its lipolytic activity in the absence of divalent metal ions. Broad substrate specificity, activity and stability at elevated temperatures make recombinant lysophospholipase an ideal candidate for potential industrial applications.


Subject(s)
Lysophospholipase , Pyrococcus abyssi , Pyrococcus abyssi/genetics , Pyrococcus abyssi/metabolism , Lysophospholipase/chemistry , Escherichia coli/genetics , Archaea/metabolism , Metals/pharmacology , Metals/metabolism , Ions/metabolism , Substrate Specificity , Recombinant Proteins/chemistry , Cloning, Molecular
5.
Int J Biol Macromol ; 256(Pt 1): 128387, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000593

ABSTRACT

Alpha amylases catalyse the hydrolysis of α-1, 4-glycosidic bonds in starch, yielding glucose, maltose, dextrin, and short oligosaccharides, vital to various industrial processes. Structural and functional insights on α-amylase from Methanocaldococcus jannaschii were computationally explored to evaluate a catalytic domain and its fusion with a small ubiquitin-like modifier (SUMO). The recombinant proteins' production, characterization, ligand binding studies, and structural analysis of the cloned amylase native full gene (MjAFG), catalytic domain (MjAD) and fusion enzymes (S-MjAD) were thoroughly analysed in this comparative study. The MjAD and S-MjAD showed 2-fold and 2.5-fold higher specific activities (µmol min-1 mg -1) than MjAFG at 95 °C at pH 6.0. Molecular modelling and MD simulation results showed that the removal of the extra loop (178 residues) at the C-terminal of the catalytic domain exposed the binding and catalytic residues near its active site, which was buried in the MjAFG enzyme. The temperature ramping and secondary structure analysis of MjAFG, MjAD and S-MjAD through CD spectrometry showed no notable alterations in the secondary structures but verified the correct folding of MjA variants. The chimeric fusion of amylases with thermostable α-glucosidases makes it a potential candidate for the starch degrading processes.


Subject(s)
Methanocaldococcus , alpha-Amylases , alpha-Amylases/chemistry , Methanocaldococcus/metabolism , Archaea/metabolism , Amylases/chemistry , Starch/metabolism
6.
Biotechnol Bioeng ; 120(8): 2092-2116, 2023 08.
Article in English | MEDLINE | ID: mdl-37475649

ABSTRACT

Amylases are biologically active enzymes that can hydrolyze starch to produce dextrin, glucose, maltose, and oligosaccharides. The amylases contribute approximately 30% to the global industrial enzyme market. The globally produced amylases are widely used in textile, biofuel, starch processing, food, bioremediation of environmental pollutants, pulp, and paper, clinical, and fermentation industries. The purpose of this review article is to summarize recent trends and aspects of α-amylases, classification, microbial production sources, biosynthesis and production methods, and its broad-spectrum applications for industrial purposes, which will depict the latest trends in α-amylases production. In the present article, we have comprehensively compared the biodiversity of α-amylases in different model organisms ranging from archaea to eukaryotes using in silico structural analysis tools. The detailed comparative analysis: regarding their structure, function, cofactor, signal peptide, and catalytic domain along with their catalytic residues of α-amylases in 16 model organisms were discussed in this paper. The comparative studies on alpha (α) amylases' secondary and tertiary structures, multiple sequence alignment, transmembrane helices, physiochemical properties, and their phylogenetic analysis in model organisms were briefly studied. This review has documented the recent trends and future perspectives of industrially important novel thermophilic α-amylases. In conclusion, this review sheds light on the current understanding and prospects of α-amylase research, highlighting its importance as a versatile enzyme with numerous applications and emphasizing the need for further exploration and innovation in this field.


Subject(s)
Amylases , alpha-Amylases , alpha-Amylases/chemistry , alpha-Amylases/genetics , Phylogeny , Amylases/genetics , Catalysis , Starch
7.
Sci Rep ; 12(1): 21093, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473939

ABSTRACT

Premature leaf senescence negatively influences the physiology and yield of cotton plants. The conserved IDLNL sequence in the C-terminal region of AGL42 MADS-box determines its repressor potential for the down regulation of senescence-related genes. To determine the delay in premature leaf senescence, Arabidopsis AGL42 gene was overexpressed in cotton plants. The absolute quantification of transgenic cotton plants revealed higher mRNA expression of AGL42 compared to that of the non-transgenic control. The spatial expression of GUS fused with AGL42 and the mRNA level was highest in the petals, abscission zone (flower and bud), 8 days post anthesis (DPA) fiber, fresh mature leaves, and senescenced leaves. The mRNA levels of different NAC senescence-promoting genes were significantly downregulated in AGL42 transgenic cotton lines than those in the non-transgenic control. The photosynthetic rate and chlorophyll content were higher in AGL42 transgenic cotton lines than those in the non-transgenic control. Fluorescence in situ hybridization of the AG3 transgenic cotton line revealed a fluorescent signal on chromosome 1 in the hemizygous form. Moreover, the average number of bolls in the transgenic cotton lines was significantly higher than that in the non-transgenic control because of the higher retention of floral buds and squares, which has the potential to improve cotton fiber yield.


Subject(s)
Gossypium , Transcription Factors , Gossypium/genetics , Down-Regulation , Transcription Factors/genetics , In Situ Hybridization, Fluorescence , Plant Senescence , RNA, Messenger
8.
Tuberculosis (Edinb) ; 136: 102253, 2022 09.
Article in English | MEDLINE | ID: mdl-36067572

ABSTRACT

Tuberculosis (TB) stays a major cause of death globally after COVID-19 and HIV. An early diagnosis to control TB effectively, needs a fast reliable diagnostic method with high sensitivity. Serodiagnosis involving polyclonal antibodies detection against an antigen of Mycobacterium tuberculosis (Mtb) in serum samples can be instrumental. In our study, Rv3874 and Rv3875 antigens were cloned, expressed, and purified individually and as a chimeric construct in Escherichia coli BL21. Enzyme-Linked Immunosorbent Assay (ELISA) based findings revealed that the Rv3874-Rv3875 chimeric construct was two-fold more sensitive (59.7%) than the individual sensitivities of Rv3874 (28.4%) and Rv3875 (24.9%) for 201 serum TB positive samples. Furthermore, the fusion construct was a little more sensitive (60.4%) for male subjects than that for females (58.8%). Lastly, our preliminary findings, molecular insights of secondary structure, and statistical and in silico analysis of each construct also advocate that CEP can be considered a better immunodiagnostic tool in addition to previously reported EC skin test.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis , Antigens, Bacterial , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli , Female , Humans , Male , Mycobacterium tuberculosis/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sensitivity and Specificity , Serologic Tests , Tuberculosis/diagnosis
9.
Mol Biol Rep ; 49(6): 5315-5323, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34839448

ABSTRACT

BACKGROUND: The efficacy of Bt crystal proteins has been compromised due to their extensive utilization in the field. The second-generation Bt vegetative insecticidal proteins could be the best-suited alternative to combat resistance build-up due to their broad range affinity with midgut receptors of insects. MATERIAL AND RESULTS: The codon-optimized synthetic vegetative insecticidal proteins (Vip3Aa) gene under the control of CaMV35S promoter was transformed into a locally developed transgenic cotton variety (CKC-01) expressing cry1Ac and cry2A genes. Transformation efficiency of 1.63% was recorded. The highest Vip3Aa expression (51.98-fold) was found in MS3 transgenic cotton plant. Maximum Vip3Aa protein concentration (4.23 µg/mL) was calculated in transgenic cotton plant MS3 through ELISA. The transgenic cotton plant (MS3) showed one copy number on both chromatids in the homozygous form at chromosome 8 at the telophase stage. Almost 99% mortality of H. armigera was recorded in transgenic cotton plants expressing double crystal proteins pyramided with Vip3Aa gene as contrasted to transgenic cotton plant expressing only double crystal protein with 70% mortality. CONCLUSIONS: The results obtained during this study suggest that the combination of Bt cry1Ac, cry2A, and Vip3Aa toxins is the best possible alternative approach to combat chewing insects.


Subject(s)
Bacillus thuringiensis Toxins , Moths , Animals , Bacterial Proteins/genetics , Endotoxins/genetics , Gossypium/genetics , Hemolysin Proteins/genetics , Insecta/genetics , Insecticide Resistance/genetics , Larva , Moths/genetics , Plants, Genetically Modified/genetics
10.
GM Crops Food ; 12(1): 292-302, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33648412

ABSTRACT

Gossypium arboreum (Desi Cotton) holds a special place in cotton industry because of its inherent ability to withstand drought, salinity, and remarkable resistance to sucking pests and cotton leaf curl virus. However, it suffers yield losses due to weeds and bollworm infestation. Genetic modification of G. arboreum variety FBD-1 was attempted in the current study to combat insect and weedicide resistance by incorporating cry1Ac, cry2A and cp4-EPSPS genes under control of 35S promoter in two different cassettes using kanamycin and GUS as markers through Agrobacterium-mediated shoot apex cut method of cotton transformation. The efficiency of transformation was found to be 1.57%. Amplification of 1700 bp for cry1Ac, 167 bp for cry2A and 111 bp for cp4-EPSPS confirmed the presence of transgenes in cotton plants. The maximum mRNA expression of cry1Ac and cp4-EPSPS was observed in transgenic cotton line L3 while minimum in transgenic cotton line L1. The maximum protein concentrations of Cry1Ac, Cry2A and Cp4-EPSPS of 3.534 µg g-1, 2.534 µg g-1 and 3.58 µg-g-1 respectively were observed for transgenic cotton line L3 as compared to control cotton line. On leaf-feed-based insect bioassay, almost 99% mortality was observed for Helicoverpa armigera on the transgenic cotton plant (L3). It completely survived the 1900 ml hectare-1 glyphosate spray assay as compared to non-transgenic cotton plants. The necrotic spots appeared on the third day, leading to the complete death of control plants on the fifth day of assay. The successful multiple gene-stacking in G. arboreum FBD-1 variety could be further used for qualitative improvement of cotton fiber through plant breeding techniques.


Subject(s)
Gossypium , Moths , Animals , Bacterial Proteins/genetics , Endotoxins , Gossypium/genetics , Hemolysin Proteins/genetics , Plant Breeding , Plants, Genetically Modified
11.
Plant Cell Rep ; 40(4): 707-721, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33634360

ABSTRACT

KEY MESSAGE: Second generation Bt insecticidal toxin in comibination with Allium sativum leaf agglutinin gene has been successfully expressed in cotton to develop sustainable resistance against major chewing and sucking insects. The first evidence of using the Second-generation Bt gene in combination with Allium sativum plant lectin to develop sustainable resistance against chewing and sucking insects has been successfully addressed in the current study. Excessive use of Bt δ-endotoxins in the field is delimiting its insecticidal potential. Second-generation Bt Vip3Aa could be the possible alternative because it does not share midgut receptor sites with any known cry proteins. Insecticidal potential of plant lectins against whitefly remains to be evaluated. In this study, codon-optimized synthetic Bt Vip3Aa gene under CaMV35S promoter and Allium sativum leaf agglutinin gene under phloem-specific promoter were transformed in a local cotton variety. Initial screening of putative transgenic cotton plants was done through amplification, histochemical staining and immunostrip assay. The mRNA expression of Vip3Aa gene was increased to be ninefold in transgenic cotton line L6P3 than non-transgenic control while ASAL expression was found to be fivefold higher in transgenic line L34P2 as compared to non-transgenic control. The maximum Vip3Aa concentration was observed in transgenic line L6P3. Two copy numbers in homozygous form at chromosome number 9 and one copy number in hemizygous form at chromosome number 10 was observed in transgenic line L6P3 through fluorescent in situ hybridization. Significant variation was observed in transgenic cotton lines for morphological characteristics, whereas physiological parameters of plants and fiber characteristics (as assessed by scanning electron microscopic) remained comparable in transgenic and non-transgenic cotton lines. Leaf-detach bioassay showed that all the transgenic lines were significantly resistant to Helicoverpa armigera showing mortality rates between 78% and 100%. Similarly, up to 95% mortality of whiteflies was observed in transgenic cotton lines when compared with non-transgenic control lines.


Subject(s)
Bacterial Proteins/genetics , Gossypium/genetics , Insecta , Plant Lectins/genetics , Plants, Genetically Modified/physiology , Agglutinins/genetics , Animals , Cotton Fiber , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Garlic/genetics , Gene Dosage , Gossypium/physiology , Hemiptera , Insect Control , Moths , Promoter Regions, Genetic
12.
PLoS One ; 15(3): e0230519, 2020.
Article in English | MEDLINE | ID: mdl-32187234

ABSTRACT

Promoters are specified segments of DNA that lead to the initiation of transcription of a specific gene. The designing of a gene cassette for plant transformation is significantly dependent upon the specificity of a promoter. Constitutive Cauliflower mosaic virus promoter, CaMV35S, due to its developmental role, is the most commonly used promoter in plant transformation. While Gossypium hirsutum (Gh) being fiber-specific promoter (GhSCFP) specifically activates transcription in seed coat and fiber associated genes. The Expansin genes are renowned for their versatile roles in plant growth. The overexpression of Expansin genes has been reported to enhance fiber length and fineness. Thus, in this study, a local Cotton variety was transformed with Expansin (CpEXPA1) gene, in the form of two separate cassettes, each with a different promoter, named as 35SEXPA1 and FSEXPA1 expressed under CaMV35S and GhSCFP promoters respectively. Integration and Spatiotemporal relative expression of the transgene were studied in an advanced generation. GhSCFP bearing transgene expression was significantly higher in Cotton fiber than other plant parts. While transgene with CaMV35S promoter was found to be continually expressing in all tissues but the expression was lower in fiber than that expressed under GhSCFP. The temporal expression profile was quite interesting with a gradual increasing pattern of both constructs from 1DPA (days post anthesis) to 18DPA and decreased expression from 24 to 30 DPA. Besides the relative expression of promoters, fiber cellulose quantification and fluorescence intensity were also observed. The study significantly compared the two most commonly used promoters and it is deduced from the results that the GhSCFP promoter could be used more efficiently in fiber when compared with CaMV35S which being constitutive in nature preferred for expression in all parts of the plant.


Subject(s)
Cotton Fiber , Gossypium/genetics , Gossypium/metabolism , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...