Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38083712

ABSTRACT

Many studies on morphology analysis show that if short inter-stimulus intervals separate tasks, the hemodynamic response amplitude will return to the resting-state baseline before the subsequent stimulation onset; hence, responses to successive tasks do not overlap. Accordingly, popular brain imaging analysis techniques assume changes in hemodynamic response amplitude subside after a short time (around 15 seconds). However, whether this assumption holds when studying brain functional connectivity has yet to be investigated. This paper assesses whether or not the functional connectivity network in control trials returns to the resting-state functional connectivity network. Traditionally, control trials in block-design experiments are used to evaluate response morphology to no stimulus. We analyzed data from an event-related experiment with audio and visual stimuli and resting state. Our results showed that functional connectivity networks during control trials were more similar to that of tasks than resting-state networks. In other words, contrary to task-related changes in the hemodynamic amplitude, where responses settle after a short time, the brain's functional connectivity networks do not return to their intrinsic resting-state network in such short intervals.


Subject(s)
Magnetic Resonance Imaging , Nerve Net , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Rest/physiology , Brain/diagnostic imaging , Brain/physiology , Neuroimaging
2.
iScience ; 25(8): 104737, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35938045

ABSTRACT

Sensory deprivation causes structural and functional changes in the human brain. Cochlear implantation delivers immediate reintroduction of auditory sensory information. Previous reports have indicated that over a year is required for the brain to reestablish canonical cortical processing patterns after the reintroduction of auditory stimulation. We utilized functional near-infrared spectroscopy (fNIRS) to investigate brain activity to natural speech stimuli directly after cochlear implantation. We presented 12 cochlear implant recipients, who each had a minimum of 12 months of auditory deprivation, with unilateral auditory- and visual-speech stimuli. Regardless of the side of implantation, canonical responses were elicited primarily on the contralateral side of stimulation as early as 1 h after device activation. These data indicate that auditory pathway connections are sustained during periods of sensory deprivation in adults, and that typical cortical lateralization is observed immediately following the reintroduction of auditory sensory input.

3.
J Speech Lang Hear Res ; 65(3): 1196-1211, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35133853

ABSTRACT

PURPOSE: The goal of this study was to investigate the effect of age on phoneme recognition performance in which the stimuli varied in the amount of temporal information available in the signal. Chronological age is increasingly recognized as a factor that can limit the amount of benefit an individual can receive from a cochlear implant (CI). Central auditory temporal processing deficits in older listeners may contribute to the performance gap between younger and older CI users on recognition of phonemes varying in temporal cues. METHOD: Phoneme recognition was measured at three stimulation rates (500, 900, and 1800 pulses per second) and two envelope modulation frequencies (50 Hz and unfiltered) in 20 CI participants ranging in age from 27 to 85 years. Speech stimuli were multiple word pairs differing in temporal contrasts and were presented via direct stimulation of the electrode array using an eight-channel continuous interleaved sampling strategy. Phoneme recognition performance was evaluated at each stimulation rate condition using both envelope modulation frequencies. RESULTS: Duration of deafness was the strongest subject-level predictor of phoneme recognition, with participants with longer durations of deafness having poorer performance overall. Chronological age did not predict performance for any stimulus condition. Additionally, duration of deafness interacted with envelope filtering. Participants with shorter durations of deafness were able to take advantage of higher frequency envelope modulations, while participants with longer durations of deafness were not. CONCLUSIONS: Age did not significantly predict phoneme recognition performance. In contrast, longer durations of deafness were associated with a reduced ability to utilize available temporal information within the signal to improve phoneme recognition performance.


Subject(s)
Cochlear Implantation , Cochlear Implants , Deafness , Speech Perception , Adult , Aged , Aged, 80 and over , Auditory Perception , Cues , Deafness/rehabilitation , Deafness/surgery , Humans , Middle Aged , Speech Perception/physiology
4.
Neurophotonics ; 8(4): 041001, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34901310

ABSTRACT

Significance: Mayer waves are spontaneous oscillations in arterial blood pressure that can mask cortical hemodynamic responses associated with neural activity of interest. Aim: We aim to characterize the properties of oscillations in the functional near-infrared spectroscopy (fNIRS) signal generated by Mayer waves in a large sample of fNIRS recordings. Further, we aim to determine the impact of short-channel correction for the attenuation of these unwanted signal components. Approach: Mayer-wave oscillation parameters were extracted from 310 fNIRS measurements using the fitting oscillations and one-over-f method to compute normative values. The effect of short-channel correction on Mayer-wave oscillation power was quantified on 222 measurements. The practical benefit of the short-channel correction approach for reducing Mayer waves and improving response detection was also evaluated on a subgroup of 17 fNIRS measurements collected during a passive auditory speech detection experiment. Results: Mayer-wave oscillations had a mean frequency of 0.108 Hz, bandwidth of 0.04 Hz, and power of 3.5 µ M 2 / Hz . The distribution of oscillation signal power was positively skewed, with some measurements containing large Mayer waves. Short-channel correction significantly reduced the amplitude of these undesired signals; greater attenuation was observed for measurements containing larger Mayer-wave oscillations. Conclusions: A robust method for quantifying Mayer-wave oscillations in the fNIRS signal spectrum was presented and used to provide normative parameterization. Short-channel correction is recommended as an approach for attenuating Mayer waves, particularly in participants with large oscillations.

5.
Hear Res ; 406: 108256, 2021 07.
Article in English | MEDLINE | ID: mdl-34051607

ABSTRACT

As an alternative to fMRI, functional near-infrared spectroscopy (fNIRS) is a relatively new tool for observing cortical activation. However, spatial resolution is reduced compared to fMRI and often the exact locations of fNIRS optodes and specific anatomical information is not known. The aim of this study was to explore the location and range of specific regions of interest that are sensitive to detecting cortical activation using fNIRS in response to auditory- and visual-only connected speech. Two approaches to a priori region-of-interest selection were explored. First, broad regions corresponding to the auditory cortex and occipital lobe were analysed. Next, the fNIRS Optode Location Decider (fOLD) tool was used to divide the auditory and visual regions into two subregions corresponding to distinct anatomical structures. The Auditory-A and -B regions corresponded to Heschl's gyrus and planum temporale, respectively. The Visual-A region corresponded to the superior occipital gyrus and the cuneus, and the Visual-B region corresponded to the middle occipital gyrus. The experimental stimulus consisted of a connected speech signal segmented into 12.5-sec blocks and was presented in either an auditory-only or visual-only condition. Group-level results for eight normal-hearing adult participants averaged over the broad regions of interest revealed significant auditory-evoked activation for both the left and right broad auditory regions of interest. No significant activity was observed for any other broad region of interest in response to any stimulus condition. When divided into subregions, there was a significant positive auditory-evoked response in the left and right Auditory-A regions, suggesting activation near the primary auditory cortex in response to auditory-only speech. There was a significant positive visual-evoked response in the Visual-B region, suggesting middle occipital gyrus activation in response to visual-only speech. In the Visual-A region, however, there was a significant negative visual-evoked response. This result suggests a significant decrease in oxygenated hemoglobin in the superior occipital gyrus as well as the cuneus in response to visual-only speech. Distinct response characteristics, either positive or negative, in adjacent subregions within the temporal and occipital lobes were fairly consistent on the individual level. Results suggest that temporal regions near Heschl's gyrus may be the most advantageous location in adults for identifying hemodynamic responses to complex auditory speech signals using fNIRS. In the occipital lobe, regions corresponding to the facial processing pathway may prove advantageous for measuring positive responses to visual speech using fNIRS.


Subject(s)
Auditory Cortex , Spectroscopy, Near-Infrared , Speech Perception , Acoustic Stimulation , Adult , Auditory Cortex/diagnostic imaging , Brain Mapping , Humans , Magnetic Resonance Imaging , Speech
6.
Neurophotonics ; 8(2): 025008, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34036117

ABSTRACT

Significance: Functional near-infrared spectroscopy (fNIRS) is an increasingly popular tool in auditory research, but the range of analysis procedures employed across studies may complicate the interpretation of data. Aim: We aim to assess the impact of different analysis procedures on the morphology, detection, and lateralization of auditory responses in fNIRS. Specifically, we determine whether averaging or generalized linear model (GLM)-based analysis generates different experimental conclusions when applied to a block-protocol design. The impact of parameter selection of GLMs on detecting auditory-evoked responses was also quantified. Approach: 17 listeners were exposed to three commonly employed auditory stimuli: noise, speech, and silence. A block design, comprising sounds of 5 s duration and 10 to 20 s silent intervals, was employed. Results: Both analysis procedures generated similar response morphologies and amplitude estimates, and both indicated that responses to speech were significantly greater than to noise or silence. Neither approach indicated a significant effect of brain hemisphere on responses to speech. Methods to correct for systemic hemodynamic responses using short channels improved detection at the individual level. Conclusions: Consistent with theoretical considerations, simulations, and other experimental domains, GLM and averaging analyses generate the same group-level experimental conclusions. We release this dataset publicly for use in future development and optimization of algorithms.

7.
Trends Hear ; 25: 23312165211007367, 2021.
Article in English | MEDLINE | ID: mdl-34028313

ABSTRACT

Cochlear-implant (CI) users rely heavily on temporal envelope cues to understand speech. Temporal processing abilities may decline with advancing age in adult CI users. This study investigated the effect of age on the ability to discriminate changes in pulse rate. Twenty CI users aged 23 to 80 years participated in a rate discrimination task. They attempted to discriminate a 35% rate increase from baseline rates of 100, 200, 300, 400, or 500 pulses per second. The stimuli were electrical pulse trains delivered to a single electrode via direct stimulation to an apical (Electrode 20), a middle (Electrode 12), or a basal location (Electrode 4). Electrically evoked compound action potential amplitude growth functions were recorded at each of those electrodes as an estimate of peripheral neural survival. Results showed that temporal pulse rate discrimination performance declined with advancing age at higher stimulation rates (e.g., 500 pulses per second) when compared with lower rates. The age-related changes in temporal pulse rate discrimination at higher stimulation rates persisted after statistical analysis to account for the estimated peripheral contributions from electrically evoked compound action potential amplitude growth functions. These results indicate the potential contributions of central factors to the limitations in temporal pulse rate discrimination ability associated with aging in CI users.


Subject(s)
Cochlear Implantation , Cochlear Implants , Deafness , Adult , Aged , Aged, 80 and over , Aging , Electric Stimulation , Evoked Potentials, Auditory , Heart Rate , Humans , Middle Aged , Young Adult
8.
Trends Hear ; 24: 2331216520956560, 2020.
Article in English | MEDLINE | ID: mdl-32941111

ABSTRACT

Accurate processing of temporal information is critical to understanding speech through a cochlear implant (CI). This has potential implications for the growing population of CI users who are ≥65 years of age because of age-related auditory temporal processing deficits. The goal of this study was to measure temporal processing ability in a gap detection task in younger, middle-aged, and older CI users and to determine the relative contributions of chronological age and peripheral neural survival to performance. Single-electrode gap detection thresholds (GDTs) were measured using direct stimulation at five electrode locations and three electrical stimulation rates. The relationship between peripheral status (e.g., electrode-to-neural interface) and GDTs was assessed by the slope of the electrically evoked compound action potential (ECAP) amplitude growth function. Results showed that ECAP slope was the strongest subject-level predictor of GDTs. Steeper ECAP slopes, which are partially indicative of better peripheral function, were associated with better GDTs in younger participants. However, ECAP slope significantly interacted with stimulation rate and age, suggesting that ECAP slopes were not predictive of GDTs in middle-aged and older participants at some stimulation rates. ECAP slope was also related to age, with middle-aged and older participants exhibiting relatively shallow slopes and smaller ranges of slopes compared with younger participants. This pattern of ECAP results limited the evaluation of the independent effects of aging per se and peripheral status on temporal processing ability.


Subject(s)
Cochlear Implantation , Cochlear Implants , Action Potentials , Aged , Aging , Electric Stimulation , Evoked Potentials, Auditory , Humans , Middle Aged
10.
Trends Hear ; 24: 2331216520936160, 2020.
Article in English | MEDLINE | ID: mdl-32833587

ABSTRACT

Although cochlear implants (CIs) are a viable treatment option for severe hearing loss in adults of any age, older adults may be at a disadvantage compared with younger adults. CIs deliver signals that contain limited spectral information, requiring CI users to attend to the temporal information within the signal to recognize speech. Older adults are susceptible to acquiring auditory temporal processing deficits, presenting a potential age-related limitation for recognizing speech signals delivered by CIs. The goal of this study was to measure auditory temporal processing ability via amplitude-modulation (AM) detection as a function of age in CI users. The contribution of the electrode-to-neural interface, in addition to age, was estimated using electrically evoked compound action potential (ECAP) amplitude growth functions. Within each participant, two electrodes were selected: one with the steepest ECAP slope and one with the shallowest ECAP slope, in order to represent electrodes with varied estimates of the electrode-to-neural interface. Single-electrode AM detection thresholds were measured using direct stimulation at these two electrode locations. Results revealed that AM detection ability significantly declined as a function of chronological age. ECAP slope did not significantly impact AM detection, but ECAP slope decreased (became shallower) with increasing age, suggesting that factors influencing the electrode-to-neural interface change with age. Results demonstrated a significant negative impact of chronological age on auditory temporal processing. The locus of the age-related limitation (peripheral vs. central origin), however, is difficult to evaluate because the peripheral influence (ECAPs) was correlated with the central factor (age).


Subject(s)
Cochlear Implantation , Cochlear Implants , Hearing Loss , Action Potentials , Aged , Aging , Electric Stimulation , Hearing Loss/surgery , Humans
11.
Ear Hear ; 41(5): 1226-1235, 2020.
Article in English | MEDLINE | ID: mdl-32032222

ABSTRACT

OBJECTIVES: Cochlear implant (CI) signal processing degrades the spectral components of speech. This requires CI users to rely primarily on temporal cues, specifically, amplitude modulations within the temporal envelope, to recognize speech. Auditory temporal processing ability for envelope modulations worsens with advancing age, which may put older CI users at a disadvantage compared with younger users. To evaluate how potential age-related limitations for processing temporal envelope modulations impact spectrally degraded sentence recognition, noise-vocoded sentences were presented to younger and older normal-hearing listeners in quiet. Envelope modulation rates were varied from 10 to 500 Hz by adjusting the low-pass filter cutoff frequency (LPF). The goal of this study was to evaluate if age impacts recognition of noise-vocoded speech and if this age-related limitation existed for a specific range of envelope modulation rates. DESIGN: Noise-vocoded sentence recognition in quiet was measured as a function of number of spectral channels (4, 6, 8, and 12 channels) and LPF (10, 20, 50, 75, 150, 375, and 500 Hz) in 15 younger normal-hearing listeners and 15 older near-normal-hearing listeners. Hearing thresholds and working memory were assessed to determine the extent to which these factors were related to recognition of noise-vocoded sentences. RESULTS: Younger listeners achieved significantly higher sentence recognition scores than older listeners overall. Performance improved in both groups as the number of spectral channels and LPF increased. As the number of spectral channels increased, the differences in sentence recognition scores between groups decreased. A spectral-temporal trade-off was observed in both groups in which performance in the 8- and 12-channel conditions plateaued with lower-frequency amplitude modulations compared with the 4- and 6-channel conditions. There was no interaction between age group and LPF, suggesting that both groups obtained similar improvements in performance with increasing LPF. The lack of an interaction between age and LPF may be due to the nature of the task of recognizing sentences in quiet. Audiometric thresholds were the only significant predictor of vocoded sentence recognition. Although performance on the working memory task declined with advancing age, working memory scores did not predict sentence recognition. CONCLUSIONS: Younger listeners outperformed older listeners for recognizing noise-vocoded sentences in quiet. The negative impact of age was reduced when ample spectral information was available. Age-related limitations for recognizing vocoded sentences were not affected by the temporal envelope modulation rate of the signal, but instead, appear to be related to a generalized task limitation or to reduced audibility of the signal.


Subject(s)
Cochlear Implants , Speech Perception , Hearing , Humans , Memory, Short-Term , Noise
12.
Ear Hear ; 41(3): 640-651, 2020.
Article in English | MEDLINE | ID: mdl-31702596

ABSTRACT

OBJECTIVES: Cochlear implants (CIs) are considered a safe and effective intervention for more severe degrees of hearing loss in adults of all ages. Although older CI users ≥65 years of age can obtain large benefits in speech understanding from a CI, there is a growing body of literature suggesting that older CI users may not perform as well as younger CI users. One reason for this potential age-related limitation could be that default CI stimulation settings are not optimal for older CI users. The goal of this study was to determine whether improvements in speech understanding were possible when CI users were programmed with nondefault stimulation rates and to determine whether lower-than-default stimulation rates improved older CI users' speech understanding. DESIGN: Sentence recognition was measured acutely using different stimulation rates in 37 CI users ranging in age from 22 to 87 years. Maps were created using rates of 500, 720, 900, and 1200 pulses per second (pps) for each subject. An additional map using a rate higher than 1200 pps was also created for individuals who used a higher rate in their clinical processors. Thus, the clinical rate of each subject was also tested, including non-default rates above 1200 pps for Cochlear users and higher rates consistent with the manufacturer defaults for subjects implanted with Advanced Bionics and Med-El devices. Speech understanding performance was evaluated at each stimulation rate using AzBio and Perceptually Robust English Sentence Test Open-set (PRESTO) sentence materials tested in quiet and in noise. RESULTS: For Cochlear-brand users, speech understanding performance using non-default rates was slightly poorer when compared with the default rate (900 pps). However, this effect was offset somewhat by age, in which older subjects were able to maintain comparable performance using a 500-pps map compared with the default rate map when listening to the more difficult PRESTO sentence material. Advanced Bionics and Med-El users showed modest improvements in their overall performance using 720 pps compared with the default rate (>1200 pps). On the individual-subject level, 10 subjects (11 ears) showed a significant effect of stimulation rate, with 8 of those ears performing best with a lower-than-default rate. CONCLUSIONS: Results suggest that default stimulation rates are likely sufficient for many CI users, but some CI users at any age can benefit from a lower-than-default rate. Future work that provides experience with novel rates in everyday life has the potential to identify more individuals whose performance could be improved with changes to stimulation rate.


Subject(s)
Cochlear Implantation , Cochlear Implants , Deafness , Speech Perception , Adult , Aged , Humans , Speech
13.
Trends Hear ; 23: 2331216519886688, 2019.
Article in English | MEDLINE | ID: mdl-31808373

ABSTRACT

Aging may limit speech understanding outcomes in cochlear-implant (CI) users. Here, we examined age-related declines in auditory temporal processing as a potential mechanism that underlies speech understanding deficits associated with aging in CI users. Auditory temporal processing was assessed with a categorization task for the words dish and ditch (i.e., identify each token as the word dish or ditch) on a continuum of speech tokens with varying silence duration (0 to 60 ms) prior to the final fricative. In Experiments 1 and 2, younger CI (YCI), middle-aged CI (MCI), and older CI (OCI) users participated in the categorization task across a range of presentation levels (25 to 85 dB). Relative to YCI, OCI required longer silence durations to identify ditch and exhibited reduced ability to distinguish the words dish and ditch (shallower slopes in the categorization function). Critically, we observed age-related performance differences only at higher presentation levels. This contrasted with findings from normal-hearing listeners in Experiment 3 that demonstrated age-related performance differences independent of presentation level. In summary, aging in CI users appears to degrade the ability to utilize brief temporal cues in word identification, particularly at high levels. Age-specific CI programming may potentially improve clinical outcomes for speech understanding performance by older CI listeners.


Subject(s)
Aging , Cochlear Implants/statistics & numerical data , Speech Perception , Adult , Aged , Cochlear Implantation , Cues , Female , Humans , Male , Middle Aged , Speech , Time Factors
14.
Ear Hear ; 38(6): e335-e342, 2017.
Article in English | MEDLINE | ID: mdl-28562426

ABSTRACT

OBJECTIVES: As people age, they experience reduced temporal processing abilities. This results in poorer ability to understand speech, particularly for degraded input signals. Cochlear implants (CIs) convey speech information via the temporal envelopes of a spectrally degraded input signal. Because there is an increasing number of older CI users, there is a need to understand how temporal processing changes with age. Therefore, the goal of this study was to quantify age-related reduction in temporal processing abilities when attempting to discriminate words based on temporal envelope information from spectrally degraded signals. DESIGN: Younger normal-hearing (YNH) and older normal-hearing (ONH) participants were presented a continuum of speech tokens that varied in silence duration between phonemes (0 to 60 ms in 10-ms steps), and were asked to identify whether the stimulus was perceived more as the word "dish" or "ditch." Stimuli were vocoded using tonal carriers. The number of channels (1, 2, 4, 8, 16, and unprocessed) and temporal envelope low-pass filter cutoff frequency (50 and 400 Hz) were systematically varied. RESULTS: For the unprocessed conditions, the YNH participants perceived the word ditch for smaller silence durations than the ONH participants, indicating that aging affects temporal processing abilities. There was no difference in performance between the unprocessed and 16-channel, 400-Hz vocoded stimuli. Decreasing the number of spectral channels caused decreased ability to distinguish dish and ditch. Decreasing the envelope cutoff frequency also caused decreased ability to distinguish dish and ditch. The overall pattern of results revealed that reductions in spectral and temporal information had a relatively larger effect on the ONH participants compared with the YNH participants. CONCLUSIONS: Aging reduces the ability to utilize brief temporal cues in speech segments. Reducing spectral information-as occurs in a channel vocoder and in CI speech processing strategies-forces participants to use temporal envelope information; however, older participants are less capable of utilizing this information. These results suggest that providing as much spectral and temporal speech information as possible would benefit older CI users relatively more than younger CI users. In addition, the present findings help set expectations of clinical outcomes for speech understanding performance by adult CI users as a function of age.


Subject(s)
Aging/physiology , Cues , Speech Perception/physiology , Time Perception/physiology , Adolescent , Adult , Age Factors , Aged , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...