Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36679338

ABSTRACT

Biocatalysts based on the methylotrophic yeast Ogataea polymorpha VKM Y-2559 immobilized in polymer-based nanocomposites for the treatment of methanol-containing wastewater were developed. The organosilica composites with different matrix-to-filler ratios derived from TEOS/MTES in the presence of PEG (SPEG-composite) and from silicon-polyethylene glycol (STPEG-composite) differ in the structure of the silicate phase and its distribution in the composite matrix. Methods of fluorescent and scanning microscopy first confirmed the formation of an organosilica shell around living yeast cells during sol-gel bio-STPEG-composite synthesis. Biosensors based on the yeast cells immobilized in STPEG- and SPEG-composites are characterized by effective operation: the coefficient of sensitivity is 0.85 ± 0.07 mgO2 × min-1 × mmol-1 and 0.87 ± 0.05 mgO2 × min-1 × mmol-1, and the long-term stability is 10 and 15 days, respectively. The encapsulated microbial cells are protected from UV radiation and the toxic action of heavy metal ions. Biofilters based on the developed biocatalysts are characterized by high effectiveness in the utilization of methanol-rich wastewater-their oxidative power reached 900 gO2/(m3 × cycle), and their purification degree was up to 60%.

2.
J Colloid Interface Sci ; 365(1): 81-9, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21978403

ABSTRACT

Formation of organic/inorganic hydrogels based on silicon- and titanium-glycerol precursors synthesized by transesterification of alkoxy derivatives in excess of glycerol was investigated. The precursors in excess of glycerol and obtained gels were studied by chemical and physical methods including gelation kinetics, IR spectroscopy, XRD, dynamic and electrophoretic light scattering, mechanical deformation, which disclosed the basic difference in the gelation mechanism and structure of network in the hydrogels. Due to this difference, the gelation time of silicon- and titanium-glycerol precursors depended on pH or electrolyte addition in an opposite way. In the wide pH range, silicon-glycerol hydrogel was a polymeric single-phase system formed by the polymeric network homogeneously swollen in liquid water/glycerol medium. Flory-Rehner theory applied to the elastic modulus of these gels gave 40-180 monomer base units in the subchains of the network depending on water content in the gel. The mechanism of networking was three-dimensional polycondensation promoted by the electrically charged functional groups attached to the flexible polymeric chains. Electrolyte solutions provided the gelation according to Hofmeister series. Titanium-glycerol hydrogels were heterogeneous colloid systems at pH>1.5 and single-phase polymeric gels at lower pH. Electrolyte solutions provided the gelation according to Schultze-Hardy rule.


Subject(s)
Colloids/chemistry , Glycerol/chemistry , Hydrogels/chemistry , Silicon/chemistry , Titanium/chemistry , Electrolytes/chemistry , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...