Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38004443

ABSTRACT

Cancer is a major disease that threatens human health all over the world. Intervention and prevention in premalignant processes are successful ways to prevent cancer from striking. On the other hand, the marine ecosystem is a treasure storehouse of promising bioactive metabolites. The use of such marine products can be optimized by selecting a suitable nanocarrier. Therefore, epi-obtusane, previously isolated from Aplysia oculifera, was investigated for its potential anticancer effects toward cervical cancer through a series of in vitro assays in HeLa cells using the MTT assay method. Additionally, the sesquiterpene was encapsulated within a liposomal formulation (size = 130.8 ± 50.3, PDI = 0.462, zeta potential -12.3 ± 2.3), and the antiproliferative potential of epi-obtusane was investigated against the human cervical cancer cell line HeLa before and after encapsulation with liposomes. Epi-obtusane exhibited a potent effect against the HeLa cell line, while the formulated molecule with liposomes increased the in vitro antiproliferative activity. Additionally, cell cycle arrest analysis, as well as the apoptosis assay, performed via FITC-Annexin-V/propidium iodide double staining (flow cytofluorimetry), were carried out. The pharmacological network enabled us to deliver further insights into the mechanism of epi-obtusane, suggesting that STAT3 might be targeted by the compound. Moreover, molecular docking showed a comparable binding score of the isolated compound towards the STAT3 SH2 domain. The targets possess an anticancer effect through the endometrial cancer pathway, regulation of DNA templated transcription, and nitric oxide synthase, as mentioned by the KEGG and ShinyGo 7.1 databases.

2.
BMC Microbiol ; 23(1): 343, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37974074

ABSTRACT

Endophytic fungi, particularly from higher plants have proven to be a rich source of antimicrobial secondary metabolites. The purpose of this study is to examine the antimicrobial potential of three endophytic fungi Aspergillus sp. SA1, Aspergillus sp. SA2, and Aspergillus sp. SA3, cultivated from Nigella sativa seeds against Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Klebsiella pneumoniae (ATCC 13883), MRSA (ATCC 33591), and human pathogen Candida albicans (ATCC 10231). Furthermore, the most active cultivated endophytic fungi were molecularly identified via internal transcribed spacer (ITS) sequencing. HR-ESIMS guided approach has been used successfully in chemical profiling of 26 known bioactive secondary metabolites (1-26), which belongs to different classes of natural compounds such as polyketides, benzenoids, quinones, alcohols, phenols or alkaloids. Finally, in-silico interactions within active site of fungal Cyp51 and bacterial DNA gyrase revealed possibility of being a hit-target for such metabolites as antimicrobials.


Subject(s)
Anti-Infective Agents , Nigella sativa , Humans , Endophytes/chemistry , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Seeds , Fungi
3.
BMC Microbiol ; 23(1): 355, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980505

ABSTRACT

BACKGROUND: Endophytic fungi are very rich sources of natural antibacterial and antifungal compounds. The main aim of this study is to isolate the fungal endophytes from the medicinal plant Corchorus olitorius seeds (F. Malvaceae), followed by antimicrobial screening against various bacterial and fungal strains. RESULTS: Seven endophytic fungal strains belonging to different three genera were isolated, including Penicillium, Fusarium, and Aspergillus. The seven isolated endophytic strains revealed selective noticeable activity against Escherichia coli (ATCC25922) with varied IC50s ranging from 1.19 to 10 µg /mL, in which Aspergillus sp. (Ar 6) exhibited the strongest potency against E. coli (ATCC 25,922) and candida albicans (ATCC 10,231) with IC50s 1.19 and 15 µg /mL, respectively. Therefore, the chemical profiling of Aspergillus sp. (Ar 6) crude extract was performed using LC-HR-ESI-MS and led to the dereplication of sixteen compounds of various classes (1-16). In-silico analysis of the dereplicated metabolites led to highlighting the compounds responsible for the antimicrobial activity of Aspergillus sp. extract. Moreover, molecular docking showed the potential targets of the metabolites; Astellatol (5), Aspergillipeptide A (10), and Emericellamide C (14) against E. coli and C. albicans. CONCLUSION: These results will expand the knowledge of endophytes and provide us with new approaches to face the global antibiotic resistance problem and the future production of undiscovered compounds different from the antibiotics classes.


Subject(s)
Anti-Infective Agents , Corchorus , Corchorus/microbiology , Molecular Docking Simulation , Escherichia coli , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Fungi , Anti-Bacterial Agents/metabolism , Aspergillus , Seeds/microbiology
4.
Sci Rep ; 13(1): 20612, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996449

ABSTRACT

Cancer is the world's second-leading cause of death. Drug development efforts frequently focus on medicinal plants since they are a valuable source of anticancer medications. A phytochemical investigation of the edible Ziziphus spina-christi (F. Rhamnaceae) leaf extract afforded two new dammarane type saponins identified as christinin E and F (1, 2), along with the known compound christinin A (3). Different cancer cell lines, such as lung cancer (A549), glioblastoma (U87), breast cancer (MDA-MB-231), and colorectal carcinoma (CT-26) cell lines, were used to investigate the extracted compounds' cytotoxic properties. Our findings showed significant effects on all the tested cell lines at varying concentrations (1, 5, 10, and 20 µg/mL). The three compounds exhibited potent activity at low concentrations (< 10 µg/mL), as evidenced by their low IC50 values. To further investigate the complex relationships between these identified cancer-relevant biological targets and to identify critical targets in the pathogenesis of the disease, we turned to network pharmacology and in silico-based investigations. Following this, in silico-based analysis (e.g., inverse docking, ΔG calculation, and molecular dynamics simulation) was performed on the structures of the isolated compounds to identify additional potential targets for these compounds and their likely interactions with various signalling pathways relevant to this disease. Based on our findings, Z. spina-christi's compounds showed promise as potential anti-cancer therapeutic leads in the future.


Subject(s)
Antineoplastic Agents , Saponins , Ziziphus , Plant Extracts/pharmacology , Plant Extracts/chemistry , Ziziphus/chemistry , Saponins/pharmacology , Dammaranes
5.
Nat Prod Res ; 37(23): 4063-4068, 2023.
Article in English | MEDLINE | ID: mdl-36657413

ABSTRACT

Endophytic fungi are known to be a rich source of anti-infective drugs. In our study, Allium cepa was investigated for fungal diversity using different media to give 11 isolates which were identified morphologically. Out of the isolated fungal strains, Penicillium sp. (LCEF10) revealed potential anti-infective activity against the tested microbes (Fusarium solani ATTC 25922, Pseudomonas aeruginosa (ATTC 29231), Staphylococcus aureus ATTC 27853, Candida albicans ATTC 10231), besides, their MICs were measured by well diffusion method, therefore, it was subjected to molecular identification in addition to phylogenetic analysis. Moreover, the ITS sequence of strain LCEF10 showed a consistent assignment with the highest sequence similarity (99.81%) to Penicillium oxalicum NRRL 787. The crude ethyl acetate extract of Penicillium sp. LCEF10 was investigated for metabolomic analysis using LC-HR-ESI-MS. The metabolic profiling revealed the presence of polyketides, macrolides, phenolics and terpenoids. Furthermore, in silico molecular docking study was carried out to predict which compounds most likely responsible for the anti-infective activity.


Subject(s)
Anti-Infective Agents , Onions , Phylogeny , Molecular Docking Simulation , Anti-Infective Agents/pharmacology , Fungi , Candida albicans , Endophytes
6.
Molecules ; 27(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36500473

ABSTRACT

Bioassay-guided fractionation technique of roots of Paeonia officinalis led to isolation and structure elucidation of seven known compounds, including four monoterpene glycosides: lactiflorin (1), paeoniflorin (4), galloyl paeoniflorin (5), and (Z)-(1S,5R)-ß-pinen-10-yl ß-vicianoside (7); two phenolics: benzoic acid (2) and methyl gallate (3); and one sterol glycoside: ß-sitosterol 3-O-ß-D-glucopyranoside (6). The different fractions and the isolated compounds were evaluated for their antimicrobial and antimalarial activities. Fraction II and III showed antifungal activity against Candida neoformans with IC50 values of 28.11 and 74.37 µg/mL, respectively, compared with the standard fluconazole (IC50 = 4.68 µg/mL), and antibacterial potential against Pseudomonas aeruginosa (IC50 = 20.27 and 24.82 µg/mL, respectively) and Klebsiella pneumoniae (IC50 = 43.21 and 94.4 µg/mL, respectively), compared with the standard meropenem (IC50 = 28.67 and 43.94 µg/mL, respectively). Compounds 3 and 5 showed antimalarial activity against Plasmodium falciparum D6 with IC50 values of 1.57 and 4.72 µg/mL and P. falciparum W2 with IC50 values of 0.61 and 2.91 µg/mL, respectively, compared with the standard chloroquine (IC50 = 0.026 and 0.14 µg/mL, respectively).


Subject(s)
Anti-Infective Agents , Antimalarials , Paeonia , Antimalarials/chemistry , Paeonia/chemistry , Plasmodium falciparum , Chemical Fractionation , Anti-Infective Agents/pharmacology , Plant Extracts/chemistry
7.
RSC Adv ; 12(45): 29078-29102, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36320761

ABSTRACT

Antibiotic resistance is one of the critical issues, describing a significant social health complication globally. Hence, the discovery of novel antibiotics has acquired an increased attention particularly against drug-resistant pathogens. Natural products have served as potent therapeutics against pathogenic bacteria since the glorious age of antibiotics of the mid 20th century. This review outlines the various mechanistic candidates for dealing with multi-drug resistant pathogens and explores the terrestrial phytochemicals isolated from plants, lichens, insects, animals, fungi, bacteria, mushrooms, and minerals with reported antimicrobial activity, either alone or in combination with conventional antibiotics. Moreover, newly established tools are presented, including prebiotics, probiotics, synbiotics, bacteriophages, nanoparticles, and bacteriocins, supporting the progress of effective antibiotics to address the emergence of antibiotic-resistant infectious bacteria. Therefore, the current article may uncover promising drug candidates that can be used in drug discovery in the future.

8.
Molecules ; 27(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296628

ABSTRACT

Aphthous ulcers are very common disorders among different age groups and are very noxious and painful. The incidence of aphthous ulcer recurrence is very high and it may even last for a maximum of 6 days and usually, patients cannot stand its pain. This study aims to prepare a buccoadhesive fast dissolving film containing Corchorus olitorius seed extract to treat recurrent minor aphthous ulceration (RMAU) in addition to clinical experiments on human volunteers. An excision wound model was used to assess the in vivo wound healing potential of Corchorus olitorius L. seed extract, with a focus on wound healing molecular targets such as TGF-, TNF-, and IL-1. In addition, metabolomic profiling using HR-LCMS for the crude extract of Corchorus olitorius seeds was explored. Moreover, molecular docking experiments were performed to elucidate the binding confirmation of the isolated compounds with three molecular targets (TNF-α, IL-1ß, and GSK3). Additionally, the in vitro antioxidant potential of C. olitorius seed extract using both H2O2 and superoxide radical scavenging activity was examined. Clinical experiments on human volunteers revealed the efficiency of the prepared C. olitorius seeds buccal fast dissolving film (CoBFDF) in relieving pain and wound healing of RMAU. Moreover, the wound healing results revealed that C. olitorius seed extract enhanced wound closure rates (p ≤ 0.001), elevated TGF-ß levels and significantly downregulated TNF-α and IL-1ß in comparison to the Mebo-treated group. The phenotypical results were supported by biochemical and histopathological findings, while metabolomic profiling using HR-LCMS for the crude extract of Corchorus olitorius seeds yielded a total of 21 compounds belonging to diverse chemical classes. Finally, this study highlights the potential of C. olitorius seed extract in wound repair uncovering the most probable mechanisms of action using in silico analysis.


Subject(s)
Corchorus , Stomatitis, Aphthous , Humans , Corchorus/chemistry , Stomatitis, Aphthous/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Healthy Volunteers , Tumor Necrosis Factor-alpha , Superoxides , Molecular Docking Simulation , Glycogen Synthase Kinase 3 , Hydrogen Peroxide , Plant Extracts/pharmacology , Seeds , Pain , Transforming Growth Factor beta , Interleukin-1
9.
Mar Drugs ; 20(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36286452

ABSTRACT

In this study, the LC-HRMS-assisted chemical profiling of Hyrtios erectus sponge led to the annotation of eleven major compounds (1-11). H. erectus-derived crude extract (HE) was tested in vitro for its antiproliferative activity against three human cancer cell lines, Hep-G2 (human liver cancer cell line), MCF-7 (breast cancer cell line), and Caco-2 (colon cancer cell line), before and after encapsulation within niosomes. Hyrtios erectus extract showed moderate in vitro antiproliferative activities towards the studied cell lines with IC50 values 18.5 ± 0.08, 15.2 ± 0.11, and 13.4 ± 0.12, respectively. The formulated extract-containing niosomes (size 142.3 ± 10.3 nm, PDI 0.279, and zeta potential 22.8 ± 1.6) increased the in vitro antiproliferative activity of the entrapped extract significantly (IC50 8.5 ± 0.04, 4.1 ± 0.07, and 3.4 ± 0.05, respectively). A subsequent computational chemical study was performed to build a sponge-metabolite-targets-cancer diseases network, by focusing on targets that possess anticancer activity toward the three cancer types: breast, colon, and liver. Pubchem, BindingDB, and DisGenet databases were used to build the network. Shinygo and KEGG databases in addition to FunRich software were used for gene ontology and functional analysis. The computational analysis linked the metabolites to 200 genes among which 147 genes related to cancer and only 64 genes are intersected in the three cancer types. The study proved that the co-occurrence of compounds 1, 2, 3, 7, 8, and 10 are the most probable compounds possessing cytotoxic activity due to large number of connections to the intersected cytotoxic genes with edges range from 9-14. The targets possess the anticancer effect through Pathways in cancer, Endocrine resistance and Proteoglycans in cancer as mentioned by KEGG and ShinyGo 7.1 databases. This study introduces niosomes as a promising strategy to promote the cytotoxic potential of H. erectus extract.


Subject(s)
Antineoplastic Agents , Liposomes , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Caco-2 Cells , Complex Mixtures , Indian Ocean , Proteoglycans , Porifera
10.
Antioxidants (Basel) ; 11(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36139817

ABSTRACT

Moringa oleifera Lam. (Moringaceae) is an adaptable plant with promising phytoconstituents, interesting medicinal uses, and nutritional importance. Chemical profiling of M. oleifera seeds assisted by LC-HRMS (HPLC system coupled to a high resolution mass detector) led to the dereplication of 19 metabolites. Additionally, the wound healing potential of M. oleifera seed extract was investigated in male New Zealand Dutch strain albino rabbits and supported by histopathological examinations. Moreover, the molecular mechanisms were investigated via different in vitro investigations and through analyzing the relative gene and protein expression patterns. When compared to the untreated and MEBO®-treated groups, topical administration of M. oleifera extract on excision wounds resulted in a substantial increase in wound healing rate (p < 0.001), elevating TGF-ß1, VEGF, Type I collagen relative expression, and reducing inflammatory markers such as IL-1ß and TNF-α. In vitro antioxidant assays showed that the extract displayed strong scavenging effects to peroxides and superoxide free radicals. In silico studies using a molecular docking approach against TNF-α, TGFBR1, and IL-1ß showed that some metabolites in M. oleifera seed extract can bind to the active sites of three wound-healing related proteins. Protein−protein interaction (PPI) and compound−protein interaction (CPI) networks were constructed as well. Quercetin, caffeic acid, and kaempferol showed the highest connectivity with the putative proteins. In silico drug likeness studies revealed that almost all compounds comply with both Lipinski's and Veber's rule. According to the previous findings, an in vitro study was carried out on the pure compounds, including quercetin, kaempferol, and caffeic acid (identified from M. oleifera) to validate the proposed approach and to verify their potential effectiveness. Their inhibitory potential was evaluated against the pro-inflammatory cytokine IL-6 and against the endopeptidase MMPs (matrix metalloproteinases) subtype I and II, with highest activity being observed for kaempferol. Hence, M. oleifera seeds could be a promising source of bioactive compounds with potential antioxidant and wound healing capabilities.

11.
Antioxidants (Basel) ; 11(7)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35883720

ABSTRACT

One of the most severe human health problems is gastric ulceration. The main aim of our study is to explore the gastroprotective effect of the Psidium guajava seeds extract (PGE). Metabolic profiling based on LC-HRMS for the extract led to the dereplication of 23 compounds (1-23). We carried out a gastric ulcer model induced by indomethacin in male albino rats in vivo and the extract of PGE was investigated at a dose of 300 mg/kg in comparison to cimetidine (100 mg/kg). Furthermore, the assessment of gastric mucosal lesions and histopathology investigation of gastric tissue was done. It has been proved that Psidium guajava seeds significantly decreased the ulcer index and protected the mucosa from lesions. The antiulcer effect of Psidium guajava seed extract, which has the power of reducing the ensuing inflammatory reactions, can counteract the inflammation induced by indomethacin by the downregulation of relative genes expression (IL-1ß, IL-6, and TNF-α). Moreover, PGE significantly downregulated the increased COX-2, TGF-ß, and IGF-1 relative genes expression, confirming its beneficial effect in ulcer healing. Moreover, the possible PGE antioxidant potential was determined by in vitro assays using hydrogen peroxide and superoxide radical scavenging and revealed high antioxidant potential. Additionally, on the putatively annotated metabolites, an in silico study was conducted, which emphasized the extract's antiulcer properties might be attributed to several sterols such as stigmasterol and campesterol. The present study provided evidence of Psidium guajava seeds considered as a potential natural gastroprotective agent.

12.
Plants (Basel) ; 11(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35684165

ABSTRACT

LC-HRMS-assisted chemical profiling of Zizyphus mauritiana fruit extract (ZFE) led to the dereplication of 28 metabolites. Furthermore, wound healing activity of ZFE in 24 adult male New Zealand Dutch strain albino rabbits was investigated in-vivo supported by histopathological investigation. Additionally, the molecular mechanism was studied through different in-vitro investigations as well as, studying both relative gene expression and relative protein expression patterns. Moreover, the antioxidant activity of ZFE extract was examined using two in-vitro assays including hydrogen peroxide and superoxide radical scavenging activities that showed promising antioxidant potential. Topical application of the extract on excision wounds showed a significant increase in the wound healing rate (p < 0.001) in comparison to the untreated and MEBO®-treated groups, enhancing TGF-ß1, VEGF, Type I collagen expression, and suppressing inflammatory markers (TNF-α and IL-1ß). Moreover, an in silico molecular docking against TNFα, TGFBR1, and IL-1ß showed that some of the molecules identified in ZFE can bind to the three wound-healing related protein actives sites. Additionally, PASS computational calculation of antioxidant activity revealed potential activity of three phenolic compounds (Pa score > 0.5). Consequently, ZFE may be a potential alternative medication helping wound healing owing to its antioxidant and anti-inflammatory activities.

13.
Nat Prod Res ; 36(11): 2917-2922, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34039169

ABSTRACT

Cancer is a hazard life-threatening disease, which affect huge population worldwide. Marine actinomycetes are considered as promising source for potential chemotherapeutic agents. In our study, we carried out metabolic profiling for Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 that were cultivated from the Red Sea sponge Amphimedon sp. to investigate their chemical diversity using different media conditions. The crude culture extracts were subjected to high-resolution mass spectrometry (HRMS) analysis. The chemical profiles of the different extracts of Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 revealed their richness in diverse metabolites and consequently twenty compounds (1-20) were annotated. Moreover, the obtained extracts of the differently cultivated Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 were investigated against three cell lines HepG2, MCF-7 and CACO2 and revealed the targeted cytotoxicity of Nocardia sp. and Nocardiopsis sp. metabolites against the three cell lines.


Subject(s)
Actinobacteria , Antineoplastic Agents , Nocardia , Porifera , Actinobacteria/chemistry , Actinomyces , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Caco-2 Cells , Humans , Nocardia/chemistry , Nocardiopsis
14.
Food Funct ; 12(22): 11303-11318, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34643201

ABSTRACT

In the present study, we investigated the hypoglycemic effect of different extracts (i.e. organic and aqueous) derived from the fruits of Hyphaene thebaica (doum) on male streptozotocin-induced diabetic rats. Blood glucose levels as well as the relative gene expression of insulin, TNF-α, and TGF-ß were determined in the pancreatic tissue of the experimental animals. Treatment of STZ-induced diabetic rats with aqueous extracts of the plant fruit over 7 weeks significantly reduced the elevated blood glucose and increased the relative expression of insulin, while the relative expression of inflammatory mediators (i.e. TNF-α and TGF-ß) was significantly reduced. Histopathological investigation also revealed that the aqueous extract treatment effectively reversed the ß-cell necrosis induced by STZ and restored its normal morphology. Furthermore, liquid chromatography high resolution mass spectrometry (LC-HRMS) and in silico chemical investigation of the aqueous extract elucidated its major bioactive phytochemicals (i.e. flavonoids) and putatively determined the pancreatic KATP channel as a target for these bioactive components. In vitro insulin secretion assay revealed that myricetin, luteolin, and apigenin were able to induce insulin secretion by human pancreatic cells (insulin production = 20.9 ± 1.3, 13.74 ± 1.8, and 11.33 ± 1.1 ng mL-1, respectively). Using molecular docking and dynamics simulations, we were able to shed the light on the insulin secretagogue's mode of action through these identified bioactive compounds and to determine the main structural elements required for its bioactivity. This comprehensive investigation of this native fruit will encourage future clinical studies to recommend edible and widely available fruits like doum to be a part of DM treatment plans.


Subject(s)
Arecaceae/chemistry , Diabetes Mellitus, Experimental/metabolism , Hyperglycemia/metabolism , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Animals , Blood Glucose/drug effects , Flavonoids/pharmacology , Insulin/metabolism , Male , Molecular Docking Simulation , Phytochemicals/pharmacology , Rats , Rats, Wistar
15.
Molecules ; 26(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205768

ABSTRACT

Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites.


Subject(s)
Biological Products/chemistry , Biological Products/pharmacology , Coronavirus 3C Proteases/chemistry , Porifera/chemistry , Porifera/metabolism , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/drug effects , Amino Sugars/chemistry , Amino Sugars/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Biological Products/isolation & purification , Biological Products/pharmacokinetics , Computational Biology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/metabolism , COVID-19 Drug Treatment
16.
Antioxidants (Basel) ; 10(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922167

ABSTRACT

Gastric ulceration is among the most serious humanpublic health problems. Olea europea L. cv. Arbequina is one of the numerous olive varieties which have scarcely been studied. The reported antioxidant and anti-inflammatory potential of the olive plant make it a potential prophylactic natural product against gastric ulcers. Consequently, the main goal of this study is to investigate the gastroprotective effect of Olea europea L. cv. Arbequina leaf extract. LC-HRMS-based metabolic profiling of the alcoholic extract of Olea europea L. cv. Arbequina led to the dereplication of 18 putative compounds (1-18). In vivo indomethacin-induced gastric ulcer in a rat model was established and the Olea europea extract was tested at a dose of 300 mg kg-1 compared to cimetidine (100 mg kg-1). The assessment of gastric mucosal lesions and histopathology of gastric tissue was done. It has been proved that Olea europea significantly decreased the ulcer index and protected the mucosa from lesions. The antioxidant potential of the extract was evaluated using three in vitro assays, H2O2 scavenging, xanthine oxidase inhibitory, and superoxide radical scavenging activities and showed promising activities. Moreover, an in silico based study was performed on the putatively dereplicated compounds, which highlighted that 3-hydroxy tyrosol (4) and oleacein (18) can target the 5-lipoxygenase enzyme (5-LOX) as a protective mechanism against the pathogenesis of ulceration. Upon experimental validation, both compounds 3-hydroxy tyrosol (HT) and oleacein (OC) (4 and 18, respectively) exhibited a significant in vitro 5-LOX inhibitory activity with IC50 values of 8.6 and 5.8 µg/mL, respectively. The present study suggested a possible implication of O. europea leaves as a potential candidate having gastroprotective, antioxidant, and 5-LOX inhibitory activity for the management of gastric ulcers.

17.
Nat Prod Res ; 35(24): 6093-6098, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32975127

ABSTRACT

The chemical profile of the butanol fraction of the Red Sea sponge Amphimedon sp. was explored using liquid chromatography coupled with high-resolution mass spectrometry and identified compounds (1-11). Moreover, cytotoxic activities of the total extract and other fractions were examined against three cell lines HEPG2, MCF7 and CACO2, revealed the powerful effect of the total extract and the butanol fraction against the three cell lines. Further chromatographic separation of the active butanol fraction yielded the isolation of three known compounds (9-11). Molecular modelling was carried out with the active site of the SET protein. Docking study results revealed that amphiceramides A-B (7-8) and acetamidoglucosyl ceramide (6) showed the highest energy binding affinities and interaction in the binding site of SET protein. Additionally, ADME/Tox calculations were performed for the compounds to predict their pharmacokinetics profile. These results highlighted the valuable chemical entities of Amphimedon sp. as lead source for cytotoxic natural products.


Subject(s)
Antineoplastic Agents , Biological Products , Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Caco-2 Cells , Computer Simulation , Humans , Indian Ocean
18.
Int J Nanomedicine ; 15: 3377-3389, 2020.
Article in English | MEDLINE | ID: mdl-32494136

ABSTRACT

BACKGROUND: Hepatitis C virus (HCV) infection is a major cause of hepatic diseases all over the world. This necessitates the need to discover novel anti-HCV drugs to overcome emerging drug resistance and liver complications. PURPOSE: Total extract and petroleum ether fraction of the marine sponge (Amphimedon spp.) were used for silver nanoparticle (SNP) synthesis to explore their HCV NS3 helicase- and protease-inhibitory potential. METHODS: Characterization of the prepared SNPs was carried out with ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. The metabolomic profile of different Amphimedon fractions was assessed using liquid chromatography coupled with high-resolution mass spectrometry. Fourteen known compounds were isolated and their HCV helicase and protease activities assessed using in silico modeling of their interaction with both HCV protease and helicase enzymes to reveal their anti-HCV mechanism of action. In vitro anti-HCV activity against HCV NS3 helicase and protease was then conducted to validate the computation results and compared to that of the SNPs. RESULTS: Transmission electron-microscopy analysis of NPs prepared from Amphimedon total extract and petroleum ether revealed particle sizes of 8.22-14.30 nm and 8.22-9.97 nm, and absorption bands at λmax of 450 and 415 nm, respectively. Metabolomic profiling revealed the richness of Amphimedon spp. with different phytochemical classes. Bioassay-guided isolation resulted in the isolation of 14 known compounds with anti-HCV activity, initially revealed by docking studies. In vitro anti-HCV NS3 helicase and protease assays of both isolated compounds and NPs further confirmed the computational results. CONCLUSION: Our findings indicate that Amphimedon, total extract, petroleum ether fraction, and derived NPs are promising biosources for providing anti-HCV drug candidates, with nakinadine B and 3,4-dihydro-6-hydroxymanzamine A the most potent anti-HCV agents, possessing good oral bioavailability and penetration power.


Subject(s)
Computer Simulation , DNA Helicases/antagonists & inhibitors , Green Chemistry Technology , Metabolomics , Metal Nanoparticles/chemistry , Porifera/chemistry , Silver/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Alkanes/chemistry , Animals , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Indian Ocean , Metal Nanoparticles/ultrastructure , Molecular Docking Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
19.
J Antibiot (Tokyo) ; 71(12): 1036-1039, 2018 11.
Article in English | MEDLINE | ID: mdl-30181571

ABSTRACT

The antitrypanosomally active crude extract of the sponge Hyrtios sp. was subjected to metabolomic analysis using liquid chromatography coupled with high resolution electrospray ionization mass spectrometry (LC-HR-ESIMS) for dereplication purposes. As a result, a new alkaloid, hyrtiodoline A (1), along with other four known compounds (2-5) were reported. The structures of compounds 1-5 were determined by spectroscopic analyses, including 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HRESI-MS) experiments, as well as comparison to the literature. We further investigated the antitrypanosomal activity of the five compounds, where compound 1 exhibited the most potent antitrypanosomal activity, with a half-maximal inhibitory concentration (IC50) value of 7.48 µM after 72 h.


Subject(s)
Porifera/chemistry , Trypanocidal Agents/pharmacology , Animals , Cell Survival/drug effects , Indian Ocean , Macrophages/drug effects , Magnetic Resonance Spectroscopy , Mice , Spectrometry, Mass, Electrospray Ionization , Trypanocidal Agents/isolation & purification , Trypanosoma brucei brucei/drug effects
20.
Mar Drugs ; 17(1)2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30598005

ABSTRACT

Marine sponges are a very attractive and rich source in the production of novel bioactive compounds. The sponges exhibit a wide range of pharmacological activities. The genus Amphimedon consists of various species, such as viridis, compressa, complanata, and terpenensis, along with a handful of undescribed species. The Amphimedon genus is a rich source of secondary metabolites containing diverse chemical classes, including alkaloids, ceramides, cerebrososides, and terpenes, with various valuable biological activities. This review covers the literature from January 1983 until January 2018 and provides a complete survey of all the compounds isolated from the genus Amphimedon and the associated microbiota, along with their corresponding biological activities, whenever applicable.


Subject(s)
Biological Products/chemistry , Porifera/chemistry , Alkaloids/chemistry , Animals , Ceramides/chemistry , Terpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...