Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Front Chem ; 7: 537, 2019.
Article in English | MEDLINE | ID: mdl-31428598

ABSTRACT

The reactivity of CO 2 + with CD4 has been experimentally investigated for its relevance in the chemistry of plasmas used for the conversion of CO2 in carbon-neutral fuels. Non-equilibrium plasmas are currently explored for their capability to activate very stable molecules (such as methane and carbon dioxide) and initiate a series of reactions involving highly reactive species (e.g., radicals and ions) eventually leading to the desired products. Energy, in the form of kinetic or internal excitation of reagents, influences chemical reactions. However, putting the same amount of energy in a different form may affect the reactivity differently. In this paper, we investigate the reaction of CO 2 + with methane by changing either the kinetic energy of CO 2 + or its vibrational excitation. The experiments were performed by a guided ion beam apparatus coupled to synchrotron radiation in the VUV energy range to produce vibrationally excited ions. We find that the reactivity depends on the reagent collision energy, but not so much on the vibrational excitation of CO 2 + . Concerning the product branching ratios ( CD 4 + / CD 3 + /DOCO+) there is substantial disagreement among the values reported in the literature. We find that the dominant channel is the production of CD 4 + , followed by DOCO+ and CD 3 + , as a minor endothermic channel.

2.
J Am Soc Mass Spectrom ; 29(8): 1706-1720, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29736598

ABSTRACT

We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. Graphical Abstract ᅟ.

3.
J Phys Chem A ; 122(8): 2069-2078, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29425439

ABSTRACT

(2,2'-Bipyridine)M═O+ ions (M = Cu, Ni, Co) were generated by collision-induced dissociation and near-UV photodissociation of readily available [(2,2'-bipyridine)MII(NO3)]+ ions in the gas phase, and their structure was confirmed by ion-molecule reactions combined with isotope labeling. Upon storage in a quadrupole ion trap, the (2,2'-bipyridine)M═O+ ions spontaneously added water, and the formed [(2,2'-bipyridine)M═O + H2O]+ complexes eliminated OH upon further near-UV photodissociation. This reaction sequence can be accomplished at a single laser wavelength in the range of 260-340 nm to achieve stoichiometric homolytic cleavage of gaseous water. Structures, spin states, and electronic excitations of the metal complexes were characterized by ion-molecule reactions using 2H and 18O labeling, photodissociation action spectroscopy, and density functional theory calculations.

5.
Angew Chem Int Ed Engl ; 55(26): 7469-73, 2016 06 20.
Article in English | MEDLINE | ID: mdl-27159034

ABSTRACT

We report the first application of UV/Vis photodissociation action spectroscopy for the structure elucidation of tyrosine peptide cation radicals produced by oxidative intramolecular electron transfer in gas-phase metal complexes. Oxidation of Tyr-Ala-Ala-Ala-Arg (YAAAR) produces Tyr-O radicals by combined electron and proton transfer involving the phenol and carboxyl groups. Oxidation of Ala-Ala-Ala-Tyr-Arg (AAAYR) produces a mixture of cation radicals involving electron abstraction from the Tyr phenol ring and N-terminal amino group in combination with hydrogen-atom transfer from the Cα positions of the peptide backbone.

6.
J Am Soc Mass Spectrom ; 27(7): 1176-85, 2016 07.
Article in English | MEDLINE | ID: mdl-27059977

ABSTRACT

We report a combined experimental and computational study aimed at elucidating the structure of N-terminal fragment ions of the c type produced by electron transfer dissociation of photo-leucine (L*) peptide ions GL*GGKX. The c 4 ion from GL*GGK is found to retain an intact diazirine ring that undergoes selective photodissociation at 355 nm, followed by backbone cleavage. Infrared multiphoton dissociation action spectra point to the absence in the c 4 ion of a diazoalkane group that could be produced by thermal isomerization of vibrationally hot ions. The c 4 ion from ETD of GL*GGK is assigned an amide structure by a close match of the IRMPD action spectrum and calculated IR absorption. The energetics and kinetics of c 4 ion dissociations are discussed. Graphical Abstract ᅟ.

7.
J Am Soc Mass Spectrom ; 27(4): 633-45, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26817657

ABSTRACT

Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific (13)C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)(+) ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H](+) ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase. Graphical Abstract ᅟ.


Subject(s)
Leucine/chemistry , Peptides/chemistry , Diazomethane/chemistry , Gases/chemistry , Hydrogen Bonding , Ions/chemistry , Models, Molecular , Molecular Dynamics Simulation , Photolysis
8.
J Mass Spectrom ; 50(12): 1438-42, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26634979

ABSTRACT

We report the first example of using ultraviolet (UV) photodissociation action spectroscopy for the investigation of gas-phase peptide cation-radicals produced by electron transfer dissociation. z-Type fragment ions (●) Gly-Gly-Lys(+), coordinated to 18-crown-6-ether (CE), are generated, selected by mass and photodissociated in the 200-400 nm region. The UVPD action spectra indicate the presence of valence-bond isomers differing in the position of the Cα radical defect, (α-Gly)-Gly-Lys(+) (CE), Gly-(α-Gly)-Lys(+) (CE) and Gly-Gly-(α-Lys(+))(CE). The isomers are readily distinguishable by UV absorption spectra obtained by time-dependent density functional theory (TD-DFT) calculations. In contrast, conformational isomers of these radical types are calculated to have similar UV spectra. UV photodissociation action spectroscopy represents a new tool for the investigation of transient intermediates of ion-electron reactions. Specifically, z-type cation radicals are shown to undergo spontaneous hydrogen atom migrations upon electron transfer dissociation.

9.
J Phys Chem Lett ; 6(23): 4722-7, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26562489

ABSTRACT

UV photodissociation (UVPD) action spectroscopy is reported to provide a sensitive tool for the detection of radical sites in gas-phase peptide ions. UVPD action spectra of peptide cation radicals of the z-type generated by electron-transfer dissociation point to the presence of multiple structures formed as a result of spontaneous isomerizations by hydrogen atom migration. N-terminal Cα radicals are identified as the dominant components, but the content of isomers differing in the radical defect position in the backbone or side chain depends on the nature of the aromatic residue with phenylalanine being more prone to isomerization than tryptophan. These results illustrate that spontaneous hydrogen atom migrations can occur in peptide cation-radicals upon electron-transfer dissociation.


Subject(s)
Peptides/chemistry , Spectrum Analysis/methods , Electron Transport , Ultraviolet Rays
10.
Int J Mass Spectrom ; 378: 20-30, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-26005367

ABSTRACT

The serine residue displays specific effects on the dissociations of peptide fragment cation-radicals of the z+• type which are produced by electron transfer dissociation. Energy-resolved collision-induced dissociation (ER-CID), time-resolved infrared multiphoton dissociation (TR-IRMPD), and single-photon UV photodissociation at 355 nm revealed several competitive dissociation pathways consisting of loss of OH radical, water, and backbone cleavages occurring at N-terminal and C-terminal positions relative to the serine residue. The activation modes using slow-heating and UV photon absorption resulted in different relative intensities of fragment ions. This indicated that the dissociations proceeded through several channels with different energy-dependent kinetics. The experimental data were interpreted with the help of electron structure calculations that provided fully optimized structures and relative energies for cis and trans amide isomers of the z4+• ions as well as isomerization, dissociation, and transition state energies. UV photon absorption by the z4+• ions was due to Cα-radical amide groups created by ETD that provided a new chromophore absorbing at 355 nm.

11.
J Am Soc Mass Spectrom ; 26(8): 1367-81, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25904063

ABSTRACT

Electron transfer dissociation of peptide ions with the diazirine-containing residue photomethionine (M*) results in side-chain dissociations by loss of C3H7N2 radicals in addition to standard backbone cleavages. The side-chain dissociations are particularly prominent upon activation of long-lived, charge-reduced, cation radicals (GM*GGR + 2H)(+•). Investigation of these cation radicals by near-UV photodissociation and collisional activation revealed different fragmentation products and mechanisms resulting from these ion activation modes. The dissociations observed for photomethionine were dramatically different from those previously reported for the lower homologue photoleucine; here, a difference by a single methylene group in the side chain had a large effect on the chemistries of the cation radicals upon ETD and further activation. ETD intermediates and products were probed by tandem 355-nm UV photodissociation-collision induced dissociation and found to contain chromophores that resulted from electron attachment to the diazirine ring. The nature of the newly formed chromophores and ion energetics and kinetics were investigated by electron structure calculations combining ab initio and density functional theory methods and Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The dramatic difference between the dissociations of L* and M* containing peptide cation radicals is explained by electronic effects that play a role in stabilizing critical reaction intermediates and steer the dissociations into kinetically favored reaction channels. In addition, a new alternating UVPD-ETD-UVPD MS(4) experiment is introduced and utilized for ion structure elucidation.


Subject(s)
Diazomethane/chemistry , Methionine/chemistry , Peptides/chemistry , Kinetics , Mass Spectrometry , Models, Molecular , Photolysis
12.
J Mass Spectrom ; 50(3): 470-5, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25800183

ABSTRACT

The combination of near-UV photodissociation with electron transfer and collisional activation provides a new tool for structure investigation of isolated peptide ions and reactive intermediates. Two new types of pulse experiments are reported. In the first one called UV/Vis photodissociation-electron transfer dissociation (UVPD-ETD), diazirine-labeled peptide ions are shown to undergo photodissociation in the gas phase to form new covalent bonds, guided by the ion conformation, and the products are analyzed by electron transfer dissociation. In the second experiment, called ETD-UVPD wherein synthetic labels are not necessary, electron transfer forms new cation-peptide radical chromophores that absorb at 355 nm and undergo specific backbone photodissociation reactions. The new method is applied to distinguish isomeric ions produced by ETD of arginine containing peptides.


Subject(s)
Electrons , Mass Spectrometry/methods , Peptides/analysis , Peptides/chemistry , Ultraviolet Rays , Isomerism , Photolysis
13.
J Phys Chem B ; 119(10): 3948-61, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25688483

ABSTRACT

Electron transfer reduction of gas-phase ions generated from histidine-containing peptides forms stable cation-radicals that absorb light at 355 nm, as studied for AAHAR, AAHAK, DSHAK, FHEK, HHGYK, and HHSHR. Laser photodissociation of mass-selected cation-radicals chiefly resulted in loss of H atoms, contrasting dissociations induced by slow collisional heating. The 355 nm absorption was due to new chromophores created by electron transfer and radical rearrangements in the cation-radicals. The chromophores were identified by time-dependent density functional theory calculations as 2H,3H-imidazoline and 2H-dihydrophenol radicals, formed by hydrogen atom transfer to the histidine and tyrosine side chain groups, respectively. These radicals undergo facile C-H bond dissociations upon photon absorption. In contrast, dissociations of histidine peptide cation-radicals containing the 1H,3H-imidazoline ring prefer loss of 4-methylimidazole via a multistep reaction pathway. The isomeric cation-radicals can be distinguished by a combination of collision-induced dissociation and near-UV photodissociation. The TD-DFT excitation energies in model imidazoline radicals were benchmarked on EOM-CCSD energies, and a satisfactory agreement was found for the M06-2X and ωB97XD functionals. The combination of electron transfer, photodissociation, collisional activation, and theory is presented as a powerful tool for studying structures and electronic properties of peptide cation-radicals in the gas phase.


Subject(s)
Free Radicals/chemistry , Gases/chemistry , Peptides/metabolism , Amino Acid Sequence , Cations/chemistry , Electron Transport , Histidine/chemistry , Imidazoles/chemistry , Peptides/chemistry , Photolysis/radiation effects , Thermodynamics , Ultraviolet Rays
14.
J Am Soc Mass Spectrom ; 26(3): 415-31, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25515220

ABSTRACT

Electron transfer to gas-phase peptide ions with diazirine-containing amino acid residue photoleucine (L*) triggers diazirine ring reduction followed by cascades of residue-specific radical reactions. Upon electron transfer, substantial fractions of (GL*GGR +2H)(+[Symbol: see text]) cation-radicals undergo elimination of [NH(4)O] radicals and N(2)H(2) molecules from the side chain. The side-chain dissociations are particularly prominent on collisional activation of long-lived (GL*GGR +2H)(+[Symbol: see text]) cation-radicals formed by electron transfer dissociation of noncovalent peptide-18-crown-6-ether ion complexes. The ion dissociation products were characterized by multistage tandem mass spectrometry (MS(n)) and ion mobility measurements. The elimination of [NH(4)O] was elucidated with the help of (2)H, (15) N, and (18)O-labeled peptide ions and found to specifically involve the amide oxygen of the N-terminal residue. The structures, energies, and electronic states of the peptide radical species were elucidated by a combination of near-UV photodissociation experiments and electron structure calculations combining ab initio and density functional theory methods. Electron transfer reaching the ground electronic states of charge reduced (GL*GGR +2H)(+[Symbol: see text]) cation-radicals was found to reduce the diazirine ring. In contrast, backbone N - Cα bond dissociations that represent a 60%-75% majority of all dissociations because of electron transfer are predicted to occur from excited electronic states.

15.
Org Lett ; 16(20): 5482-5, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25296289

ABSTRACT

3-Halodiazirine-3-carboxylic acids (c-CN2XCOOH, X = Cl or Br) were prepared from their esters and converted to the corresponding sodium salts. Collision-induced dissociation (CID) of the carboxylate ions led exclusively to the loss of CO2 and the resulting c-CN2X(-) ions dissociated to c-CN2 carbene at low energies. The bond dissociation energy (BDE) for c-CN2Br(-) was found to be less than 8 kcal/mol using CID of the anion generated by electrospray ionization of the carboxylate. The analogous difluoro system (CF2XCOOH/CF2X(-)/CF2) exhibits similar dissociative behavior. All experimental BDEs are in very good agreement with MP4/aug-cc-pVTZ calculations.

18.
Chemphyschem ; 13(11): 2688-98, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22693155

ABSTRACT

Even in the highly diluted gas phase, rather than electron transfer the benzene dication C(6)H(6)(2+) undergoes association with dinitrogen to form a transient C(6)H(6)N(2)(2+) dication which is best described as a ring-protonated phenyl diazonium ion. Isotopic labeling studies, photoionization experiments using synchrotron radiation, and quantum chemical computations fully support the formation of protonated diazonium, which is in turn a prototype species of superacidic chemistry in solution. Additionally, reactions of C(6)H(6)(2+) with background water involve the transient formation of diprotonated phenol and, among other things, afford a long-lived C(6)H(6)OH(2)(2+) dication, which is attributed to the hydration product of Hogeveen's elusive pyramidal structure of C(6)H(6)(2+), as the global minimum of doubly ionized benzene. Nitrogen is essential for the formation of the C(6)H(6)OH(2)(2+) dication in that it mediates the formation of the water adduct, while the bimolecular encounter of the C(6)H(6)(2+) dication with water only leads to (dissociative) electron transfer.

19.
J Chem Phys ; 135(20): 204307, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-22128935

ABSTRACT

We report the 364-nm photoelectron spectrum of HC(4)N(-). We observe electron photodetachment from the bent X(2)A" state of HC(4)N(-) to both the near-linear X(3)A" and the bent ã (1)A' states of neutral HC(4)N. We observe an extended, unresolved vibrational progression corresponding to X(3)A" ← X(2)A" photodetachment, and we measure the electron affinity (EA) of the X(3)A" state of HC(4)N to be 2.05(8) eV. Photodetachment to the bent ã (1)A' state results in a single intense origin peak at a binding energy of 2.809(4) eV, from which we determine the singlet-triplet splitting (ΔE(ST)) of HC(4)N: 0.76(8) eV. For comparison and to aid in the interpretation of the HC(4)N(-) spectrum, we also report the 364-nm photoelectron spectra of HCCN(-) and DCCN(-). Improved signal-to-noise over the previous HCCN(-) and DCCN(-) photoelectron spectra allows for a more precise determination of the EAs and ΔE(ST)s of HCCN and DCCN. The EAs of HCCN and DCCN are measured to be 2.001(15) eV and 1.998(15) eV, respectively; ΔE(ST)(HCCN) is 0.510(15) eV and ΔE(ST)(DCCN) is 0.508(15) eV. These results are discussed in the context of other organic carbene chains.

20.
J Phys Chem A ; 115(25): 6813-9, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21469716

ABSTRACT

Electrospray ionization of aqueous solutions of magnesium(II) acetate leads to microhydrated magnesium acetate cations of the type [(CH(3)COO)(2m-1)Mg(m)(H(2)O)(n)](+) with m = 1-4 and n = 0-4, which are characterized by mass spectrometry and, for the cluster with three water molecules, also by infrared multiphoton dissociation spectroscopy. Density functional theory is used to determine the energies of microhydration for the mononuclear species [(CH(3)COO)Mg(H(2)O)(n)](+) with n = 0-6 and the associated changes in molecular structure. While bidentate coordination of the acetato ligand is generally preferred, at higher values of n, a switch to a monodentate coordination becomes energetically competitive.


Subject(s)
Acetates/chemistry , Gases/chemistry , Magnesium/chemistry , Organometallic Compounds/chemistry , Water/chemistry , Cations, Divalent/chemistry , Ligands , Quantum Theory , Solutions/chemistry , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL