Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(8): e0255417, 2021.
Article in English | MEDLINE | ID: mdl-34347828

ABSTRACT

Due to the sheer number of COVID-19 (coronavirus disease 2019) cases there is a need for increased world-wide SARS-CoV-2 testing capability that is both efficient and effective. Having open and easy access to detailed information about these tests, their sensitivity, the types of samples they use, etc. would be highly useful to ensure their reproducibility, to help clients compare and decide which tests would be best suited for their applications, and to avoid costs of reinventing similar or identical tests. Additionally, this resource would provide a means of comparing the many innovative diagnostic tools that are currently being developed in order to provide a foundation of technologies and methods for the rapid development and deployment of tests for future emerging diseases. Such a resource might thus help to avert the delays in testing and screening that was observed in the early stages of the pandemic and plausibly led to more COVID-19-related deaths than necessary. We aim to address these needs via a relational database containing standardized ontology and curated data about COVID-19 diagnostic tests that have been granted Emergency Use Authorizations (EUAs) by the FDA (US Food and Drug Administration). Simple queries of this actively growing database demonstrate considerable variation among these tests with respect to sensitivity (limits of detection, LoD), controls and targets used, criteria used for calling results, sample types, reagents and instruments, and quality and amount of information provided.


Subject(s)
COVID-19 Testing , Databases, Factual , Emergencies , United States Food and Drug Administration/organization & administration , COVID-19/diagnosis , COVID-19 Testing/methods , COVID-19 Testing/standards , Data Management/organization & administration , Data Management/standards , Databases, Factual/supply & distribution , Emergencies/classification , Emergency Treatment/classification , Emergency Treatment/methods , Humans , Internet , Laboratories/standards , Reference Standards , Sensitivity and Specificity , United States , User-Computer Interface
2.
bioRxiv ; 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32766578

ABSTRACT

Due to the sheer number of COVID-19 (coronavirus disease 2019) cases, the prevalence of asymptomatic cases and the fact that undocumented cases appear to be significant for transmission of the causal virus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), there is an urgent need for increased SARS-CoV-2 testing capability that is both efficient and effective1. In response to the growing threat of the COVID-19 pandemic in February, 2020, the FDA (US Food and Drug Administration) began issuing Emergency Use Authorizations (EUAs) to laboratories and commercial manufacturers for the development and implementation of diagnostic tests[1]. So far, the gold standard assay for SARS-CoV-2 detection is the RT-qPCR (real-time quantitative polymerase chain reaction) test[2]. However, the authorized RT-qPCR test protocols vary widely, not only in the reagents, controls, and instruments they use, but also in the SARS-CoV-2 genes they target, what results constitute a positive SARS-CoV-2 infection, and their limit of detection (LoD). The FDA has provided a web site that lists most of the tests that have been issued EUAs, along with links to the authorization letters and summary documents describing these tests[1]. However, it is very challenging to use this site to compare or replicate these tests for a variety of reasons. First, at least 12 of 18 tests for EUA submissions made prior to March 31, 2020, are not listed there. To our knowledge, no EUAs have been issued for these applications. Second, the data are not standardized and are only provided as longhand prose in the summary documents. Third, some details (e.g. primer sequences) are absent from several of the test descriptions. Fourth, for tests provided by commercial manufacturers, summary documents are completely missing. To address at least the first three issues, we have developed a database, EUAdb (EUAdb.org), that holds standardized information about EUA-issued tests and is focused on RT-qPCR diagnostic tests, or "high complexity molecular-based laboratory developed tests"[1]. By providing a standardized ontology and curated data in a relational architecture, we seek to facilitate comparability and reproducibility, with the ultimate goal of consistent, universal and high-quality testing nationwide. Here, we document the basics of the EUAdb data architecture and simple data queries. The source files can be provided to anyone who wants to modify the database for his/her own research purposes. We ask that the original source of the files be made clear and that the database not be used in its original or modified forms for commercial purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...