Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Bioresour Technol ; 289: 121701, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31271917

ABSTRACT

The suitability of integrating biological and thermal transformation of microalgal biomass to design a biorefinery was studied. The mixed cultivation of Chlorella sp. and Bracteacoccus sp. in city wastewater produced 12 g L-1 of biomass (0.77 g L-1 day-1) and removed nitrates and phosphates by 68% and 75%, respectively. Microalgae outcompeted the contaminating microbes by raising the pH of wastewater to 9.93. The lipid-free residual biomass was pyrolyzed at four heating rates (10, 20, 30, 40 °C min-1) which showed a three-stage pyrolysis. The activation energies (182-256 kJ mol-1) and their corresponding lower enthalpies at the conversional fractions from 0.2 to 0.6 indicated that product formation was being favored. The values of pre-exponential factors (1015-17 s-1), Gibbs free energy (159-190 kJ mol-1) and entropy (43-81 J mol-1) showed efficient pyrolysis. The data may lead to establish a robust microalgal biorefinery to produce biomass and energy along with primary treatment of city wastewater.


Subject(s)
Biomass , Chlorella/metabolism , Chlorophyceae/metabolism , Microalgae/metabolism , Hot Temperature , Kinetics , Pyrolysis , Thermodynamics , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL