Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 12: 752926, 2021.
Article in English | MEDLINE | ID: mdl-34690784

ABSTRACT

Background: Metabolic syndrome (MetS) is a multifactorial disease, whose main stay of prevention and management is life-style modification which is difficult to attain. Combination of herbs have proven more efficacious in multi-targeted diseases, as compared to individual herbs owing to the "effect enhancing and side-effect neutralizing" properties of herbs, which forms the basis of polyherbal therapies This led us to review literature on the efficacy of herbal combinations in MetS. Methods: Electronic search of literature was conducted by using Cinnahl, Pubmed central, Cochrane and Web of Science, whereas, Google scholar was used as secondary search tool. The key words used were "metabolic syndrome, herbal/poly herbal," metabolic syndrome, clinical trial" and the timings were limited between 2005-2020. Results: After filtering and removing duplications by using PRISMA guidelines, search results were limited to 41 studies, out of which 24 studies were evaluated for combinations used in animal models and 15 in clinical trials related to metabolic syndrome. SPICE and SPIDER models were used to assess the clinical trials, whereas, a checklist and a qualitative and a semi-quantitative questionnaire was formulated to report the findings for animal based studies. Taxonomic classification of Poly herbal combinations used in animal and clinical studies was designed. Conclusion: With this study we have identified the potential polyherbal combinations along with a proposed method to validate animal studies through systematic qualitative and quantitative review. This will help researchers to study various herbal combinations in MetS, in the drug development process and will give a future direction to research on prevention and management of MetS through polyherbal combinations.

2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34480001

ABSTRACT

RalA is a small GTPase and a member of the Ras family. This molecular switch is activated downstream of Ras and is widely implicated in tumor formation and growth. Previous work has shown that the ubiquitous Ca2+-sensor calmodulin (CaM) binds to small GTPases such as RalA and K-Ras4B, but a lack of structural information has obscured the functional consequences of these interactions. Here, we have investigated the binding of CaM to RalA and found that CaM interacts exclusively with the C terminus of RalA, which is lipidated with a prenyl group in vivo to aid membrane attachment. Biophysical and structural analyses show that the two RalA membrane-targeting motifs (the prenyl anchor and the polybasic motif) are engaged by distinct lobes of CaM and that CaM binding leads to removal of RalA from its membrane environment. The structure of this complex, along with a biophysical investigation into membrane removal, provides a framework with which to understand how CaM regulates the function of RalA and sheds light on the interaction of CaM with other small GTPases, including K-Ras4B.


Subject(s)
Calmodulin/metabolism , Lipid Bilayers/metabolism , ral GTP-Binding Proteins/metabolism , Amino Acid Motifs , Binding Sites , Calmodulin/chemistry , Cell Membrane/metabolism , Humans , Lipid Bilayers/chemistry , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation , Protein Binding , Protein Prenylation , Serine/metabolism , ral GTP-Binding Proteins/chemistry
3.
Int J Breast Cancer ; 2020: 4824813, 2020.
Article in English | MEDLINE | ID: mdl-32231800

ABSTRACT

PURPOSE: Galectin-3 (Gal-3) is a glycan-binding lectin with a debated role in cancer progression due to its various functions and patterns of expression. The current study investigates the relationship between breast cancer prognosis and secreted Gal-3. METHODS: Breast cancer patients with first time cancer diagnosis and no prior treatment (n = 88) were placed in either adjuvant or neoadjuvant setting based on their treatment modality. Stromal and plasma Gal-3 levels were measured in each patient at the time of diagnosis and then throughout treatment using immunohistochemistry (IHC) and ELISA, respectively. Healthy women (>18 years of age, n = 63) were used to establish baseline levels of plasma Gal-3. Patients were followed for 84 months for disease-free survival analysis. RESULTS: Enhanced levels of plasma (adjuvant) and stromal (neoadjuvant) Gal-3 were found to be markers of chemotherapy efficacy. The patients with chemotherapy-induced increase in extracellular Gal-3 had longer disease-free interval and significantly lower rate of recurrence during 84-month follow-up compared to patients with unchanged or decreased secretion. CONCLUSION: The findings support the use of plasma Gal-3 as a marker for chemotherapy efficacy when no residual tumor is visible through imaging. Furthermore, stromal levels in any remaining tumors postchemotherapy can also be used to predict long-term prognosis in patients.

4.
Biomol NMR Assign ; 14(1): 87-91, 2020 04.
Article in English | MEDLINE | ID: mdl-31916136

ABSTRACT

The Ral proteins (RalA and RalB) are small G proteins of the Ras family that have been implicated in exocytosis, endocytosis, transcriptional regulation and mitochondrial fission, as well as having a role in tumourigenesis. RalA and RalB are activated downstream of the master regulator, Ras, which causes the nucleotide exchange of GDP for GTP. Here we report the 1H, 15 N and 13C resonance assignments of RalA in its active form bound to the GTP analogue GMPPNP. We also report the backbone assignments of RalA in its inactive, GDP-bound form. The assignments give insight into the switch regions, which change conformation upon nucleotide exchange. These switch regions are invisible in the spectra of the active, GMPPNP bound form but the residues proximal to the switches can be monitored. RalA is also an important drug target due to its over activation in some cancers and these assignments will be extremely useful for NMR-based screening approaches.


Subject(s)
Monomeric GTP-Binding Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , ral GTP-Binding Proteins/chemistry , Guanosine Diphosphate/chemistry , Protein Conformation
5.
Biochemistry ; 54(6): 1380-9, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25621740

ABSTRACT

RalA and RalB are members of the Ras family of small G proteins and are activated downstream of Ras via RalGEFs. The RalGEF-Ral axis represents one of the major effector pathways controlled by Ras and as such is an important pharmacological target. RalA and RalB are approximately 80% identical at the amino acid level; despite this, they have distinct roles both in normal cells and in the disease state. We have used our structure of RalB-RLIP76 to guide an analysis of Ral-effector interaction interfaces, creating panels of mutant proteins to probe the energetics of these interactions. The data provide a physical mechanism that underpins the effector selective mutations commonly employed to dissect Ral G protein function. Comparing the energetic landscape of the RalB-RLIP76 and RalB-Sec5 complexes reveals mutations in RalB that lead to differential binding of the two effector proteins. A panel of RLIP76 mutants was used to probe the interaction between RLIP76 and RalA and -B. Despite 100% sequence identity in the RalA and -B contact residues with RLIP76, differences still exist in the energetic profiles of the two complexes. Therefore, we have revealed properties that may account for some of the functional separation observed with RalA and RalB at the cellular level. Our mutations, in both the Ral isoforms and RLIP76, provide new tools that can be employed to parse the complex biology of Ral G protein signaling networks. The combination of these thermodynamic and structural data can also guide efforts to ablate RalA and -B activity with small molecules and peptides.


Subject(s)
Protein Isoforms/chemistry , Thermodynamics , ral GTP-Binding Proteins/chemistry , ATP-Binding Cassette Transporters/chemistry , GTPase-Activating Proteins/chemistry , Vesicular Transport Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...