Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Asian Pac J Cancer Prev ; 21(12): 3517-3526, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33369447

ABSTRACT

OBJECTIVE: BCR-ABL fusion oncogene is the hallmark of chronic myeloid leukemia (CML), causing genomic instability which leads to accumulation of mutations in BCR-ABL as well as other genes. BCR-ABL mutations are the cause of tyrosine kinase inhibitors (TKIs) resistance in CML. Recently, compound BCR-ABL mutations have been reported to resist all FDA approved TKIs. Therefore, finding novel compound BCR-ABL mutations can help and clinically manage CML. Therefore, our objective was to find out novel drug-resistant compound BCR-ABL mutations in CML and carry out their protein modelling studies. METHODOLOGY: Peripheral blood samples were collected from ten imatinib resistant CML patients receiving nilotinib treatment. BCR-ABL transcript mutations were investigated by employing capillary sequencing. Patient follow-up was carried out using European LeukemiaNet guidelines. Protein modeling  studies were carried out for new compound mutations using PyMol to see the effects of mutations at structural level. RESULTS: A novel compound mutation (K245N mutation along with G250W mutation) and previously known T351I utation was detected in two of the nilotinib resistance CML patients respectively while in the rest of 8 nilotinib responders, no resistant mutations were detected. Protein modelling studies indicated changes in BCR-ABL mutant protein which may have negatively impacted its binding with nilotinib leading to drug resistance. CONCLUSION: We report a novel nilotinib resistant BCR-ABL compound mutation (K245N along with G250W mutation) which impacts structural modification in BCR-ABL mutant protein leading to drug resistance. As compound mutations pose a new threat by causing resistance to all FDA approved tyrosine kinase inhibitors in BCR-ABL+ leukemias, our study opens a new direction for in vitro characterization of novel BCR-ABL compound mutations and their resistant to second  generation and third generation TKIs.


Subject(s)
Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm/drug effects , Fusion Proteins, bcr-abl/chemistry , Fusion Proteins, bcr-abl/genetics , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mutation , Adult , Female , Follow-Up Studies , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Middle Aged , Models, Molecular , Prognosis , Protein Conformation , Protein Kinase Inhibitors/pharmacology
2.
Mol Diagn Ther ; 19(5): 277-87, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26266519

ABSTRACT

BACKGROUND: Fusion oncogenes (FOs) resulting from chromosomal abnormalities have an important role in leukemogenesis in pediatric B cell acute lymphoblastic leukemia (ALL). The most common FOs are BCR-ABL, MLL-AF4, ETV6-RUNX1, and TCF3-PBX1, all of which have important prognostic and drug selection implications. Moreover, frequencies of FOs have ethnic variations. We studied Pakistani frequencies of FOs, clinical pattern, and outcome in pediatric B-ALL. METHODS: FOs were studied in 188 patients at diagnosis using reverse transcriptase-polymerase chain reaction (RT-PCR) and interphase fluorescent in situ hybridization (FISH). Data were analyzed using SPSS version 17 (SPSS Inc., Chicago, IL, USA). RESULTS: FOs were detected in 87.2 % of patients. Mean overall survival was 70.9 weeks, 3-year survival was 31.9 %, and 3-year relapse-free survival was 18.1 %. Four patients died of drug toxicities. ETV6-RUNX1 (19.14 %) had better survival (110.9 weeks; p = 0.03); TCF3-PBX1 (2.1 %) was associated with inferior outcome and higher central nervous system (CNS) relapse risk; MLL-AF4 (18.1 %) was more common in the 8- to 15-year age group (24/34; p = 0.001) and was associated with organomegaly, low platelet count, and poor survival; and BCR-ABL (47.9 %) was associated with older age (7-15 years, 52/90), lower remission rates, shorter survival (43.73 ± 4.24 weeks) and higher white blood cell count. Overall, MLL-AF4 and BCR-ABL were detected in 66 % of B-ALL, presented in later childhood, and were associated with poor prognosis and inferior survival. CONCLUSIONS: This study reports the highest ethnic frequency of BCR-ABL FO in pediatric ALL, and is consistent with previous reports from our region. Poor prognosis BCR-ABL and MLL-AF4 was detected in two-thirds of pediatric B-ALL and is likely to be the reason for the already reported poor survival of childhood ALL in South-East Asia. Furthermore, MLL-AF4, usually most common in infants, presented in later childhood in most of the ALL patients, which was one of the unique findings in our study. The results presented here highlight the need for mandatory inclusion of molecular testing for pediatric ALL patients in clinical decision making, together with the incorporation of tyrosine kinase inhibitors, as well as hematopoietic stem cell transplantation facilities, to improve treatment outcome for patients in developing countries.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Adolescent , Child , Child, Preschool , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Pakistan/ethnology , Precision Medicine , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/ethnology , Prognosis , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...