Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Nanomaterials (Basel) ; 14(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38607164

ABSTRACT

Cadmium sulfide and zinc oxide nanoparticles were prepared, characterized and used as electrode modifiers for the sensing of two non-steroidal anti-inflammatory drugs (NSAIDs): naproxen and mobic. The structural and morphological characterization of the synthesized nanoparticles was carried out by XRD, UV-Vis spectroscopy, FTIR and scanning electron microscopy. The electrode's enhanced surface area facilitated the signal amplification of the selected NSAIDs. The CdS-modified glassy carbon electrode (GCE) enhanced the electro-oxidation signals of naproxen to four times that of the bare GCE, while the ZnO-modified GCE led to a two-fold enhancement in the electro-oxidation signals of mobic. The oxidation of both NSAIDs occurred in a pH-dependent manner, suggesting the involvement of protons in their electron transfer reactions. The experimental conditions for the sensing of naproxen and mobic were optimized and, under optimized conditions, the modified electrode surface demonstrated the qualities of sensitivity and selectivity, and a fast responsiveness to the target NSAIDs.

2.
Sci Rep ; 14(1): 7583, 2024 03 30.
Article in English | MEDLINE | ID: mdl-38555277

ABSTRACT

Vitamin D deficiency and obesity are a worldwide health issue. Obesity refers to the accumulation of excessive fats in the body which could lead to the development of diseases. Obese people have low vitamin D levels for several reasons including larger volume of distribution, vitamin D tightly bound in fatty tissues, reduced absorption, and diets with low vitamin D. Accurately measuring vitamin D metabolites is challenging. The Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS) method was developed and validated for the analysis of vitamin D metabolites in the serum. Blood samples were collected from 452 subjects which consisted of baseline (vitamin D deficient obese subjects), follow-up (supplemented obese subjects), and healthy volunteers. The vitamin D metabolites were separated adequately by the developed UHPLC-MS/MS method. Moreover, the validation criteria for the method were within an acceptable range. The baseline, follow-up and even healthy volunteers were deficient in 25OHD3 and 25OHD2. The baseline and healthy subjects had comparable concentration of vitamin D2 and D3. However, healthy subjects had a higher concentration of 25OHD and its epimer compared to the baseline subjects. The vitamin D3 was increased significantly in the follow- up subjects; therefore, the 25OHD3 was increased significantly compared to the baseline as well; however, the increase was insufficient to achieve the optimal range. The UHPLC-MS/MS method test was applied successfully on estimation of vitamin D metabolites in subjects. This study indicates the significance of taking into account the metabolic and storage effects when evaluating the vitamin D status in obese subjects.


Subject(s)
Tandem Mass Spectrometry , Vitamin D , Humans , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Vitamins , Ergocalciferols , Obesity
3.
Antibiotics (Basel) ; 13(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38391519

ABSTRACT

The indiscriminate use of antibiotics in agriculture has raised concerns about antibiotic residues in food products, necessitating robust analytical methods for detection and quantification. In this study, our primary aim was to develop a robust and advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology specifically designed for the accurate quantification of ticarcillin degradation products in tomato leaves. The choice of ticarcillin as the target analyte stems from its frequent use in agriculture and the potential formation of degradation products, which can pose a threat to food safety. The use of tomatoes as the target sample matrix in this study is justified by their significance in human diets, their widespread cultivation, and their suitability as a model for assessing antibiotic residue dynamics in diverse agricultural environments. By optimizing the MS/MS parameters, the study successfully demonstrates the practicality and reliability of the employed LC-MS/MS method in accurately assessing ticarcillin degradation product (Thiophene-2-Acetic acid and Thiophene-3-Acetic acid) levels. The chromatographic separation was achieved using a specialized column, ensuring high resolution and sensitivity in detecting analytes. Multiple reaction monitoring (MRM) data acquisition was employed to enhance the selectivity and accuracy of the analysis. The developed method exhibited excellent linearity and precision, meeting the stringent requirements for antibiotic residue analysis in complex matrices. Key outcomes of this study include the successful identification and quantification of ticarcillin and its degradation products in tomato leaves, providing crucial insights into the fate of this antibiotic in agricultural settings. The methodology's applicability was further demonstrated by analyzing real-world samples, highlighting its potential for routine monitoring and ensuring food safety compliance. In summary, our study constitutes a noteworthy advancement in the domain of antibiotic residue analysis, offering a reliable method for quantifying ticarcillin degradation products in tomato leaves. The optimized parameters and MRM-based LC-MS/MS approach enhance the precision and sensitivity of the analysis, opening up opportunities for further studies in the assessment of antibiotic residues in agricultural ecosystems.

4.
ACS Omega ; 9(4): 4229-4245, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38313505

ABSTRACT

Energy is undeniably one of the most fundamental requirements of the current generation. Solar and wind energy are sustainable and renewable energy sources; however, their unpredictability points to the development of energy storage systems (ESSs). There has been a substantial increase in the use of batteries, particularly lithium-ion batteries (LIBs), as ESSs. However, low rate capability and degradation due to electric load in long-range electric vehicles are pushing LIBs to their limits. As alternative ESSs, magnesium-ion batteries (MIBs) possess promising properties and advantages. Cathode materials play a crucial role in MIBs. In this regard, a variety of cathode materials, including Mn-based, Se-based, vanadium- and vanadium oxide-based, S-based, and Mg2+-containing cathodes, have been investigated by experimental and theoretical techniques. Results reveal that the discharge capacity, capacity retention, and cycle life of cathode materials need improvement. Nevertheless, maintaining the long-term stability of the electrode-electrolyte interface during high-voltage operation continues to be a hurdle in the execution of MIBs, despite the continuous research in this field. The current Review mainly focuses on the most recent nanostructured-design cathode materials in an attempt to draw attention to MIBs and promote the investigation of suitable cathode materials for this promising energy storage device.

5.
Sci Rep ; 14(1): 620, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182773

ABSTRACT

Salinity stress has detrimental effects on various aspects of plant development. However, our understanding of strategies to mitigate these effects in crop plants remains limited. Recent research has shed light on the potential of sodium acetate as a mitigating component against salinity stress in several plant species. Here, we show the role of acetate sodium in counteracting the adverse effects on oat (Avena sativa) plants subjected to NaCl-induced salinity stress, including its impact on plant morphology, photosynthetic parameters, and gene expression related to photosynthesis and antioxidant capacity, ultimately leading to osmoprotection. The five-week experiment involved subjecting oat plants to four different conditions: water, salt (NaCl), sodium acetate, and a combination of salt and sodium acetate. The presence of NaCl significantly inhibited plant growth and root elongation, disrupted chlorophylls and carotenoids content, impaired chlorophyll fluorescence, and down-regulated genes associated with the plant antioxidant defense system. Furthermore, our findings reveal that when stressed plants were treated with sodium acetate, it partially reversed these adverse effects across all analyzed parameters. This reversal was particularly evident in the increased content of proline, thereby ensuring osmoprotection for oat plants, even under stressful conditions. These results provide compelling evidence regarding the positive impact of sodium acetate on various plant development parameters, with a particular focus on the enhancement of photosynthetic activity.


Subject(s)
Antioxidants , Drug-Related Side Effects and Adverse Reactions , Antioxidants/pharmacology , Avena , Sodium Chloride/pharmacology , Sodium Acetate , Acetates/pharmacology , Salt Stress
6.
Nutrients ; 15(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37960302

ABSTRACT

Vitamin D (VD) deficiency can result from insufficiency of either light exposure or VD intake. We investigated the biological effects of VD deficiency for 7 months on the mouse gastric glands. Varying degrees of VD deficiency were induced in C57BL/6 mice by keeping them on standard diet with constant-dark conditions (SDD) or VD deficient diet with constant-dark conditions (VDD). Samples of serum, glandular stomach, and gastric contents were collected for LCMS/MS, RT-PCR, immunohistochemistry, and acid content measurements. Both SDD and VDD mice had a significant decline in 25OHVD metabolite, gastric epithelial cell proliferation, and mucin 6 gene expression. These effects were enhanced with the severity of VD deficiency from SDD to VDD. Besides and compared to the control group, SDD mice only displayed a significant increase in the number of zymogenic cells (p ≤ 0.0001) and high expression of the adiponectin (p ≤ 0.05), gastrin (p ≤ 0.0001), mucin 5AC (*** p ≤ 0.001) and the Cyclin-dependent kinase inhibitor 1A (**** p ≤ 0.0001). These phenotypes were unique to SDD gastric samples and not seen in the VDD or control groups. This study suggests that the body reacts differently to diverse VD deficiency sources, light or diet.


Subject(s)
Vitamin D Deficiency , Vitamin D , Mice , Animals , Cell Lineage , Mice, Inbred C57BL , Stomach , Gastric Mucosa/metabolism , Cell Proliferation
7.
Front Plant Sci ; 14: 1182074, 2023.
Article in English | MEDLINE | ID: mdl-37731982

ABSTRACT

Efficient regeneration of transgenic plants from explants after transformation is one of the crucial steps in developing genetically modified plants with desirable traits. Identification of novel plant growth regulators and developmental regulators will assist to enhance organogenesis in culture. In this study, we observed enhanced shoot regeneration from tomato cotyledon explants in culture media containing timentin, an antibiotic frequently used to prevent Agrobacterium overgrowth after transformation. Comparative transcriptome analysis of explants grown in the presence and absence of timentin revealed several genes previously reported to play important roles in plant growth and development, including Auxin Response Factors (ARFs), GRF Interacting Factors (GIFs), Flowering Locus T (SP5G), Small auxin up-regulated RNAs (SAUR) etc. Some of the differentially expressed genes were validated by quantitative real-time PCR. We showed that ticarcillin, the main component of timentin, degrades into thiophene acetic acid (TAA) over time. TAA was detected in plant tissue grown in media containing timentin. Our results showed that TAA is indeed a plant growth regulator that promotes root organogenesis from tomato cotyledons in a manner similar to the well-known auxins, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). In combination with the cytokinin 6-benzylaminopurine (BAP), TAA was shown to promote shoot organogenesis from tomato cotyledon in a concentration-dependent manner. To the best of our knowledge, the present study reports for the first time demonstrating the function of TAA as a growth regulator in a plant species. Our work will pave the way for future studies involving different combinations of TAA with other plant hormones which may play an important role in in vitro organogenesis of recalcitrant species. Moreover, the differentially expressed genes and long noncoding RNAs identified in our transcriptome studies may serve as contender genes for studying molecular mechanisms of shoot organogenesis.

8.
J Hazard Mater ; 459: 132261, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37572608

ABSTRACT

Efficient enzyme immobilization is crucial for the successful commercialization of large-scale enzymatic water treatment. However, issues such as lack of high enzyme loading coupled with enzyme leaching present challenges for the widespread adoption of immobilized enzyme systems. The present study describes the development and bioremediation application of an enzyme biocomposite employing a cationic macrocycle-based covalent organic framework (COF) with hierarchical porosity for the immobilization of horseradish peroxidase (HRP). The intrinsic hierarchical porous features of the azacalix[4]arene-based COF (ACA-COF) allowed for a maximum HRP loading capacity of 0.76 mg/mg COF with low enzyme leaching (<5.0 %). The biocomposite, HRP@ACA-COF, exhibited exceptional thermal stability (∼200 % higher relative activity than the free enzyme), and maintained ∼60 % enzyme activity after five cycles. LCMSMS analyses confirmed that the HRP@ACA-COF system was able to achieve > 99 % degradation of seven diverse types of emerging pollutants (2-mercaptobenzothiazole, paracetamol, caffeic acid, methylparaben, furosemide, sulfamethoxazole, and salicylic acid)in under an hour. The described enzyme-COF system offers promise for efficient wastewater bioremediation applications.


Subject(s)
Metal-Organic Frameworks , Porosity , Enzymes, Immobilized/metabolism , Catalysis , Biodegradation, Environmental , Horseradish Peroxidase/metabolism
9.
Nanomaterials (Basel) ; 13(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37570536

ABSTRACT

Herein, we report an electrochemical scaffold consisting of functionalized multiwalled carbon nanotubes (COOH-fMWCNTs) and iron-doped zinc oxide nanoparticles (Fe-ZnO) for the detection of a hazardous textile dye safranin T (ST) and monitoring of its photocatalytic degradation. Prior to the detection and degradation analysis, Fe-ZnO NPs were synthesized by the sol-gel method and characterized by a number of structural and morphological techniques. The carboxyl moiety of COOH-fMWCNTs possessing a strong affinity for the amino functionality of ST led to significant enhancement of the current response at the designed electrochemical platform, whereas the electrocatalytic role, surface area enhancement, and the provision of binding sites of Fe-ZnO led to a further increase in the peak current intensity of ST. Electrochemical impedance spectroscopy showed that the sensing scaffold made of the glassy carbon electrode modified with COOH-fMWCNTs and Fe-ZnO efficiently transfers charge between the transducer and the redox probe. Under optimized conditions, the developed sensor showed a 2.3 nM limit of detection for ST. Moreover, recovery experiments and anti-interference tests qualified the sensing platform for practical applications. The dye was photocatalytically degraded using Fe-ZnO NPs up to 99% in 60 min with a rate constant of 0.068 min-1. The designed sensor was used to probe the degradation kinetics of the target dye, and the results were found consistent with the findings obtained from electronic absorption method. To the best of our knowledge, the present work is the first approach for the efficient detection and almost absolute degradation of ST.

10.
Nanomaterials (Basel) ; 13(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446535

ABSTRACT

The progress in nanotechnology has effectively tackled and overcome numerous global issues, including climate change, environmental contamination, and various lethal diseases. The nanostructures being a vital part of nanotechnology have been synthesized employing different physicochemical methods. However, these methods are expensive, polluting, eco-unfriendly, and produce toxic byproducts. Green chemistry having exceptional attributes, such as cost-effectiveness, non-toxicity, higher stability, environment friendliness, ability to control size and shape, and superior performance, has emerged as a promising alternative to address the drawbacks of conventional approaches. Plant extracts are recognized as the best option for the biosynthesis of nanoparticles due to adherence to the environmentally benign route and sustainability agenda 2030 of the United Nations. In recent decades, phytosynthesized nanoparticles have gained much attention for different scientific applications. Eucalyptus globulus (blue gum) is an evergreen plant belonging to the family Myrtaceae, which is the targeted point of this review article. Herein, we mainly focus on the fabrication of nanoparticles, such as zinc oxide, copper oxide, iron oxide, lanthanum oxide, titanium dioxide, magnesium oxide, lead oxide, nickel oxide, gold, silver, and zirconium oxide, by utilizing Eucalyptus globulus extract and its essential oils. This review article aims to provide an overview of the synthesis, characterization results, and biomedical applications of nanoparticles synthesized using Eucalyptus globulus. The present study will be a better contribution to the readers and the students of environmental research.

11.
Molecules ; 28(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37375155

ABSTRACT

The unavailability of non-poisonous and hygienic food substances is the most challenging issue of the modern era. The uncontrolled usage of toxic colorant moieties in cosmetics and food manufacturing units leads to major threats to human life. The selection of environmentally benign approaches for the removal of these toxic dyes has gained the utmost attention from researchers in recent decades. This review article's main aim is the focus on the application of green-synthesized nanoparticles (NPs) for the photocatalytic degradation of toxic food dyes. The use of synthetic dyes in the food industry is a growing concern due to their harmful effects on human health and the environment. In recent years, photocatalytic degradation has emerged as an effective and eco-friendly method for the removal of these dyes from wastewater. This review discusses the various types of green-synthesized NPs that have been used for photocatalytic degradation (without the production of any secondary pollutant), including metal and metal oxide NPs. It also highlights the synthesis methods, characterization techniques, and photocatalytic efficiency of these NPs. Furthermore, the review explores the mechanisms involved in the photocatalytic degradation of toxic food dyes using green-synthesized NPs. Different factors that responsible for the photodegradation, are also highlighted. Advantages and disadvantages, as well as economic cost, are also discussed briefly. This review will be advantageous for the readers because it covers all aspects of dyes photodegradation. The future feature and limitations are also part of this review article. Overall, this review provides valuable insights into the potential of green-synthesized NPs as a promising alternative for the removal of toxic food dyes from wastewater.


Subject(s)
Metal Nanoparticles , Nanostructures , Humans , Wastewater , Coloring Agents , Photolysis , Oxides
12.
Molecules ; 29(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38202682

ABSTRACT

Introduction: Doping and steroid use represent a serious threat to animal health and can even lead to their untimely and painful death. However, doping is an acute problem in today's animal racing world, particularly in camel racing. Testosterone and its ten esters (benzoate, valerate, isocaproate, hexahydrobenzoate, decanoate, undecanoate, laurate, enanthate, cypionate, and caproate) are of utmost importance, because when they are administered to animals it is difficult to measure them efficiently. The levels of testosterone and its esters in camels and other animals are typically determined using urine and blood tests. The aim of this study was to develop and validate a liquid chromatographic-mass spectrometric (LC-MS/MS) method to determine testosterone esters in camel hair, and to apply the validated method to determine testosterone esters in collected samples. To our knowledge, this is the first report of such research. Results and Discussion: The levels of testosterone and its ten derivatives, along with the cortisol-D4 internal standard, were optimised for LC-MS/MS analysis; however, only testosterone along with its seven esters (namely benzoate, valerate, isocaproate, hexahydrobenzoate, decanoate, undecanoate and laurate) could be validated in camel hair. Only five testosterone esters could be determined in camel hair samples; the concentrations were obtained as 10.5-14.9 pg/mg for valerate (in three camels), 12.5-151.6 pg/mg for hexahydrobenzoate (in six camels), 4.8-32.1 pg/mg for laurate (in five camels), 5.1 pg/mg decanoate (in one camel), and 8.35-169 pg/mg for testosterone (in all 24 camels). Interestingly, the three racing camels displayed high concentrations of testosterone (59.2-169 pg/mg, all three camels), laurate (4.8-14.5 pg/mg, two camels), hexahydrobenzoate (116 pg/mg, one camel), decanoate (5.1 pg/mg, one camel), and valerate (11.7 pg/mg, one camel). Methods: Camel hair samples were collected from 21 non-racing dromedary camels along with three racing camels in Al Ain, UAE; these were decontaminated, pulverised, sonicated, and extracted prior to analysis. An LC-MS/MS method was employed to determine the levels of testosterone esters in the hair samples. Conclusions: This novel camel-hair test procedure is accurate, sensitive, rapid, and robust. The findings reported in this study could be significant to evaluate racing camels for suspected doping offenses. Further controlled testosterone supplementation studies are required to evaluate individual esters' effects on camel health and diseases and on performance enhancement levels. This new hair test could promote further studies in doping control, toxicology, and pharmacology, as well as having other clinical applications relating to camel health, injury, and disease.


Subject(s)
Camelus , Testosterone , Animals , Chromatography, Liquid , Decanoates , Laurates , Tandem Mass Spectrometry , Testosterone Congeners , Benzoates , Esters , Hair , Valerates
13.
Cells ; 11(20)2022 10 17.
Article in English | MEDLINE | ID: mdl-36291121

ABSTRACT

This review highlights the pivotal role of root exudates in the rhizosphere, especially the interactions between plants and microbes and between plants and plants. Root exudates determine soil nutrient mobilization, plant nutritional status, and the communication of plant roots with microbes. Root exudates contain diverse specialized signaling metabolites (primary and secondary). The spatial behavior of these metabolites around the root zone strongly influences rhizosphere microorganisms through an intimate compatible interaction, thereby regulating complex biological and ecological mechanisms. In this context, we reviewed the current understanding of the biological phenomenon of allelopathy, which is mediated by phytotoxic compounds (called allelochemicals) released by plants into the soil that affect the growth, survival, development, ecological infestation, and intensification of other plant species and microbes in natural communities or agricultural systems. Advances in next-generation sequencing (NGS), such as metagenomics and metatranscriptomics, have opened the possibility of better understanding the effects of secreted metabolites on the composition and activity of root-associated microbial communities. Nevertheless, understanding the role of secretory metabolites in microbiome manipulation can assist in designing next-generation microbial inoculants for targeted disease mitigation and improved plant growth using the synthetic microbial communities (SynComs) tool. Besides a discussion on different approaches, we highlighted the advantages of conjugation of metabolomic approaches with genetic design (metabolite-based genome-wide association studies) in dissecting metabolome diversity and understanding the genetic components of metabolite accumulation. Recent advances in the field of metabolomics have expedited comprehensive and rapid profiling and discovery of novel bioactive compounds in root exudates. In this context, we discussed the expanding array of metabolomics platforms for metabolome profiling and their integration with multivariate data analysis, which is crucial to explore the biosynthesis pathway, as well as the regulation of associated pathways at the gene, transcript, and protein levels, and finally their role in determining and shaping the rhizomicrobiome.


Subject(s)
Microbiota , Plant Roots , Plant Roots/metabolism , Genome-Wide Association Study , Soil/chemistry , Plants/metabolism , Pheromones/metabolism
14.
ACS Omega ; 7(38): 34154-34165, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36188263

ABSTRACT

In this work, a simple and sensitive electrochemical method was developed to determine ethyl violet (EV) dye in aqueous systems by using square wave anodic stripping voltammetry (SWASV) employing a glassy carbon electrode modified with acidic-functionalized carbon nanotubes (COOH-fCNTs). In square wave anodic stripping voltammetry, EV exhibited a well-defined oxidation peak at 0.86 V at the modified GCE. Impedance spectroscopy and cyclic voltammetry were used to examine the charge transduction and sensing capabilities of the modified electrode. The influence of pH, deposition potential, and accumulation time on the electro-oxidation of EV was optimized. Under the optimum experimental conditions, the limit of detection with a value of 0.36 nM demonstrates high sensitivity of COOH-fCNTs/GCE for EV. After detection, it was envisioned to devise a method for the efficient removal of EV from an aqueous system. In this regard a photocatalytic degradation method of EV using Ho/TiO2 nanoparticles was developed. The Ho/TiO2 nanoparticles synthesized by the sol-gel method were characterized by UV-vis, XRD, FTIR, SEM, and EDX. The photocatalytic degradation studies revealed that basic medium is more suitable for a higher degradation rate of EV than acidic and neutral media. The photodegradation kinetic parameters were evaluated using UV-vis spectroscopic and electrochemical methods. The results revealed that the degradation process of EV follows first-order kinetics.

15.
ACS Omega ; 7(36): 32302-32312, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36119977

ABSTRACT

Textile industry effluents are heavily contaminated with dyes. The discharge of these toxic dyes into waterbodies poses a serious threat to aquatic flora and fauna. The ultimate entrance of these toxins from thereon into the food chain affects the primary and secondary consumers. Therefore, the adoption of a sustainable solution for protection against the detrimental effects associated with adulterated water is an immediate need of the hour. To address the severity of the issue, the present work aims to design an electrochemical sensing platform by modifying the glassy carbon electrode (GCE) with zinc oxide nanoparticles and amino group-functionalized multi-walled carbon nanotubes (NH2-fMWCNTs) for the detection of Orange II, which is a toxic azo dye. Zinc oxide nanoparticles facilitate electron transfer between the transducer and the analyte. While, the positively charged NH2-fMWCNTs in acidic medium help in preconcentration of negatively charged analyte molecules at the electrode/electrolyte interface. The modification of the GCE catalyzed the oxidation of Orange II, as evidenced by the negative shift of the oxidation potential and enhancement in peak current intensity. Square wave voltammetry was used to optimize various experimental conditions, such as the supporting electrolyte, pH of the electrolyte, deposition potential, and deposition time for the best performance of the designed sensor. Under the optimized conditions, the detection limit and quantification of the designed sensor were found to be 0.57 and 1.92 nM, respectively. The catalytic degradation studies of Orange II was shown to be facilitated by titanium dioxide, which acted as a photocatalyst. The addition of hydrogen peroxide further promoted the extent and rate of degradation of dye. The breakdown of Orange II was probed by the designed sensing platform electrochemically and also by UV-visible spectroscopy. The dye degraded up to 92% by following pseudo-first-order kinetics.

16.
Int J Mol Sci ; 23(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35743124

ABSTRACT

Over one billion people globally are vitamin D (VD) deficient. Studies on the biological roles of VD are numerous but very little on the stomach. This project aims to understand how gastric homeostasis is affected by VD deficiency caused by prolonged exposure to darkness alone or combined with VD deficient diet. Three groups of C57/BL6 mice were subjected to different light exposure conditions and diets for 12 months (n = 8−12/group): control­12 h/12 h light/dark SDL (Standard Diet/Light), 24 h dark SDD (Standard Diet/Dark), and 24 h dark VDD (VD deficient diet/Dark). Stomach samples were collected for different multi-label lectin-/immuno-histochemical and qRT-PCR analyses, and the serum for LC-MS-MS. We found that the membrane VD receptor is expressed widely in the stomach when compared to nuclear VD receptors. Compared to SDL, VDD mice developed mucous cell expansion with increased mucins-mRNA (3.27 ± 2.73 (p < 0.05)) increased apoptotic cells, 15 ± 7 (p ≤ 0.001)); decreased cell proliferation, 4 ± 4 (p < 0.05)) and decreased acid secretion 33 ± 2 µEq/kg (p ≤ 0.0001)). Interestingly, mice exposed to full darkness developed mild VD deficiency with higher VD epimer levels: 11.9 ± 2.08 ng/mL (p ≤ 0.0001)), expansion in zymogenic cell number (16 ± 3 (p ≤ 0.01)), and a reduction in acid secretion (18 ± 2 µEq/kg (p ≤ 0.0001)). In conclusion, changes in light exposure or VD levels have serious physiological effects on the gastric mucosa, which should be considered during the management of gastric disorders.


Subject(s)
Vitamin D Deficiency , Animals , Cell Proliferation , Epithelial Cells/metabolism , Homeostasis , Humans , Mice , Stomach , Vitamin D/metabolism , Vitamin D Deficiency/metabolism
17.
RSC Adv ; 12(25): 15658-15669, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35685705

ABSTRACT

The presence of organic pollutants in water and food samples is a risk for the environment. To avoid this hazard a variety of analytical tools are used for the detection of toxic organic contaminants. Herein we present a selective and sensitive electrochemical sensor based on amino group functionalized multi walled carbon nanotubes and carboxylic group functionalized multi walled carbon nanotubes (HOOC-fMWCNTs/NH2-fMWCNTs) as modifiers of the glassy carbon electrode for the detection of a toxic dye, Rhodamine B. The sensing ability of the designed sensor was examined by electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry. The synergistic effect of HOOC-fMWCNTs and NH2-fMWCNTs (layer by layer) led to enhanced electrocatalytic activity of the modified electrode surface for Rhodamine B detection. Under optimized conditions, the graph between concentration and peak current followed a linear trend in the concentration range of 0.1 nM to 0.05 µM. The limits of detection and quantification were found to be 57.4 pM and 191.3 pM respectively. The designed sensor was also used for probing the degradation of Rhodamine B. Sodium borohydride was found to degrade Rhodamine B in neutral media under ambient conditions. The kinetics of degradation followed first order kinetics. Rhodamine B degraded to the extent of more than 80% as revealed by electrochemical and spectrophotometric techniques. The developed method is promising for the treatment of dye contaminated wastewater. Moreover, it uses only a microliter volume of the sample for analysis.

18.
Nanomaterials (Basel) ; 12(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35683675

ABSTRACT

Over the past decade, layered double hydroxides (LDH) have been the subject of extensive investigations owing to their remarkable water splitting catalytic activity. Stability and porosity are several of the features of LDH which help them to serve as efficient oxygen evolution reaction (OER) catalysts. Based on these considerations, we synthesized NiCo(OH)2 LDH and probed its OER electrocatalytic performance. The synthesized catalyst was subjected to X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy for structural analysis and investigation of its surface morphology, surface composition, and oxidation states. The LDH-NiCo(OH)2 was anchored over the FTO surface and the fabricated electrode was found to exhibit a much lower OER onset potential of 265 mV, a much higher current density of 300 mAcm-2 and a smaller Tafel slope of 41 mVdec-1. Moreover, the designed catalyst was found to be stable up to 2500 repeated voltametric scans. These figures of merit regarding the structure and performance of the designed LDH are expected to provide useful insights into the fundamental understanding of the OER catalysts and their mechanisms of action, thus enabling the more rational design of cost effective and highly efficient electrocatalysts for use in water splitting.

19.
Molecules ; 27(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35566367

ABSTRACT

Plastic has made our lives comfortable as a result of its widespread use in today's world due to its low cost, longevity, adaptability, light weight and hardness; however, at the same time, it has made our lives miserable due to its non-biodegradable nature, which has resulted in environmental pollution. Therefore, the focus of this research work was on an environmentally friendly process. This research work investigated the decomposition of polypropylene waste using florisil as the catalyst in a salt bath over a temperature range of 350-430 °C. A maximum oil yield of 57.41% was recovered at 410 °C and a 40 min reaction time. The oil collected from the decomposition of polypropylene waste was examined using gas chromatography-mass spectrometry (GC-MS). The kinetic parameters of the reaction process were calculated from thermogravimetric data at temperature program rates of 3, 12, 20 and 30 °C·min-1 using the Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunnose (KAS) equations. The activation energy (Ea) and pre-exponential factor (A) for the thermo-catalytic degradation of polypropylene waste were observed in the range of 102.74-173.08 kJ·mol-1 and 7.1 × 108-9.3 × 1011 min-1 for the OFW method and 99.77-166.28 kJ·mol-1 and 1.1 × 108-5.3 × 1011 min-1 for the KAS method at a percent conversion (α) of 0.1 to 0.9, respectively. Moreover, the fuel properties of the oil were assessed and matched with the ASTM values of diesel, gasoline and kerosene oil. The oil was found to have a close resemblance to the commercial fuel. Therefore, it was concluded that utilizing florisil as the catalyst for the decomposition of waste polypropylene not only lowered the activation energy of the pyrolysis reaction but also upgraded the quantity and quality of the oil.


Subject(s)
Polypropylenes , Pyrolysis , Kinetics , Plastics , Thermogravimetry
20.
Nanomaterials (Basel) ; 12(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35458087

ABSTRACT

The electrochemical reduction of carbon dioxide (CO2) on copper electrode derived from cupric oxide (CuO), named oxide derived copper (ODCu), was studied thoroughly in the potential range of -1.0 V to -1.5 V versus RHE. The CuO nanoparticles were prepared by the hydrothermal method. The ODCu electrode was used for carbon dioxide reduction and the results revealed that this electrode is highly selective for C2+ products with enhanced current density at significantly less overpotential. This catalyst shifts the selectivity towards C2+ products with the highest Faradaic efficiency up to 58% at -0.95 V. In addition, C2 product formation at the lowest onset potential of -0.1 V is achieved with the proposed catalyst. X-ray diffraction and scanning electron microscopy revealed the reduction of CuO to Cu (111) nanoparticles during the CO2 RR. The intrinsic property of the synthesized catalyst and its surface reduction are suggested to induce sites or edges for facilitating the dimerization and coupling of intermediates to ethanol and ethylene.

SELECTION OF CITATIONS
SEARCH DETAIL
...