Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(10): e30754, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38826754

ABSTRACT

This research focuses on the interaction between the grape borer and grapevine using a discrete-time plant-herbivore model with Allee's effect. We specifically investigate a model that incorporates a strong predator functional response to better understand the system's qualitative behavior at positive equilibrium points. In the present study, we explore the topological classifications at fixed points, stability analysis, Neimark-Sacker, Transcritical bifurcation and State feedback control in the two-dimensional discrete-time plant-herbivore model. It is proved that for all involved parameters ς1,ϱ1,γ1 and ϒ1, discrete-time plant-herbivore model has boundary and interior fixed points: c1=(0,0), c2=(ς1-1ϱ1,0) and c3=(ϒ1(1-γ1)2γ1-1,γ1(2ς1+ϱ1ϒ1-2)-ϱ1ϒ1+1-ς12γ1-1) respectively. Then by linear stability theory, local dynamics with different topological classifications are investigated at fixed points: c1=(0,0), c2=(ς1-1ϱ1,0) and c3=(ϒ1(1-γ1)2γ1-1,γ1(2ς1+ϱ1ϒ1-2)-ϱ1ϒ1+1-ς12γ1-1). Our investigation uncovers that the boundary equilibrium c2=(ς1-1ϱ1,0) experiences a transcritical bifurcation, whereas the unique positive steady-state c3=(ϒ1(1-γ1)2γ1-1,γ1(2ς1+ϱ1ϒ1-2)-ϱ1ϒ1+1-ς12γ1-1) of the discrete-time plant-herbivore model undergoes a Neimark-Sacker bifurcation. To address the periodic fluctuations in grapevine population density and other unpredictable behaviors observed in the model, we propose implementing state feedback chaos control. To support our theoretical findings, we provide comprehensive numerical simulations, phase portraits, dynamics diagrams, and a graph of the maximum Lyapunov exponent. These visual representations enhance the clarity of our research outcomes and further validate the effectiveness of the chaos control approach.

2.
Water Sci Technol ; 89(8): 2044-2059, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38678408

ABSTRACT

Desalination processes are energy consuming and it is required to apply clean energy sources for supplying them to prevent environmental issues. Solar energy is one of the attractive clean energy sources for desalination. In solar thermal desalination systems, different thermal components could be used for heat transfer purpose. In solar desalination technologies, heat pipe as efficient heat transfer mediums could be employed to transfer absorbed and/or stored thermal energy. The objective of this study is to review applications of heat pipes in solar energy desalination systems. Regarding the performance dependency of these thermal systems on the variety of factors, scholars have investigated these systems by consideration of the effect of different influential factors. Based on the results, it is concluded that use of heat pipes could lead to proper performance of solar desalination systems. Aside from direct transfer of absorbed heat from solar radiation, heat pipes can be applied in the storage units of solar desalination systems to keep the systems active in night-hours or low solar irradiation conditions. The overall performance of the solar desalinations systems with heat pipes can be influenced by some factors such as filling ratio and operating fluid that affect the performance of heat pipes.


Subject(s)
Hot Temperature , Solar Energy , Water Purification/methods , Sunlight
3.
Nanomaterials (Basel) ; 13(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37570541

ABSTRACT

Nickel ferrite nanoparticles are prepared by using a low-temperature self-propagating solution combustion method using urea as fuel. The prepared nickel ferrite nanoparticles were doped with polyaniline in the three different weight ratios of 10%, 30% and 50% by using an in situ polymerization method and by adding ammonium persulfate as an oxidizing agent. The obtained samples were characterized by using XRD, FTIR, SEM and a UV-visible spectrophotometer. XRD examined crystalline peaks of ferrites and amorphous peak of polyaniline and confirmed the formation of the composites. FTIR examined the chemical nature of samples and showed peaks due to polyaniline and the characteristic peaks that were less than 1000 cm-1 wavenumber were due to metal-oxygen bond vibrations of ferrites. AC conductivity increased with frequency in all samples and the highest AC conductivity was seen in polyaniline/nickel ferrite 50%. DC conductivity increased in all samples with the temperature showing the semiconducting nature of the samples. Activation energy was evaluated by using Arrhenius plots and there was a decrease in activation energy with the addition of ferrite content. The UV-visible absorption peaks of polyaniline showed shifting in the composites. The optical direct and indirect band gaps were evaluated by plotting Tauc plots and the values of the optical band gap decreased with addition of ferrite in polyaniline and the Urbach energy increased in the samples with 10%, 30% and 50% polyaniline/nickel ferrite composites. The optical properties of these composites with a low band gap can find applications in devices such as solar cells.

4.
Nanomaterials (Basel) ; 13(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37570551

ABSTRACT

A study on the influence of magnesium ferrite nanoparticles on the optical and dielectric attributes of Polyaniline has been conducted. Magnesium nano Ferrite powder is synthesized by the self-propagating solution combustion method. Polyaniline-Magnesium nano ferrite composites are synthesized by chemical oxidative polymerization of aniline with the addition of Magnesium nanoparticles. The samples are characterized with XRD and UV-Vis spectrometer, in the wavelength range of 200-800 nm and studied for optical properties. Dielectric properties are studied in the frequency range of 50 Hz to 5 MHz. X-ray diffraction reveals single phase formation of Magnesium ferrite, whereas Polyaniline shows an amorphous nature. In the XRD of the composites, we see the crystalline peaks of ferrite becoming more intense with the addition of ferrite and whereas the peak of Polyaniline diminishes. The crystallite size is quantified with the Debye-Scherrer formula, and it increases as the content of ferrite in the composites increases. The micro-strain decreases in the composites as the percentage of ferrite enhances in the composites. In the UV-Vis absorption spectra of composites, the peaks of Polyaniline shift to higher wavelength and there is also an absorption band in the spectra of composites corresponding to that of Magnesium ferrite particles. Both direct and indirect band gaps are calculated with the Tauc plot, and both the optical band gap decrease as the percentage of ferrite increases in the composite. The dielectric loss and dielectric constant both decrease with frequency in all the samples, and the dielectric response are in good agreement with Maxwell-Wagner model. Ferrite-polymer composites with both conducting and magnetic properties are considered useful for electromagnetic shielding and microwave absorption.

5.
Sci Rep ; 12(1): 16608, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36198713

ABSTRACT

In the present work, the magnetohydrodynamic flow and heat transfer of a micropolar tri-hybrid nanofluid between two porous surfaces inside a rotating system has been examined. A tri-hybrid nanofluid is a new idea in the research area, which gives a better heat transfer rate as compared to hybrid nanofluid and nanofluid. We also incorporated the thermal radiation effects and Hall current in this article. The similarity techniques are used to reduce the governing nonlinear PDEs to a set of ODEs. For the numerical solution of the considered problem, we have used the MATLAB-based Bvp4c method. The results are presented for tri-hybrid Fe3O4-Al2O3-TiO2/H2O nanofluid. The main focus of this study is to examine the magnetohydrodynamic heat transfer and tri-hybrid nanofluid flow in a rotating system between two orthogonal permeable plates by taking into account the Hall current and thermal radiation effects. The obtained results have been explained with the help of graphical illustrations and tables. It is observed that the heat transfer rate of tri-hybrid nanofluid is greater than as compared to hybrid nanofluid and nanofluid. The increasing behavior is also noticed in micro rotational velocity for augmented values of [Formula: see text], [Formula: see text] and [Formula: see text]. The larger values of [Formula: see text], [Formula: see text], and [Formula: see text] result in the decrement of SFC and increment in Nusselt number in both (suction and injection) cases.

6.
Sci Rep ; 12(1): 17548, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36266415

ABSTRACT

Under the influence of an alternating magnetic field, flow and heat transfer of a ferrofluid flow over a flexible revolving disc are examined. The flow is hampered by the external magnetic field, which is dependent on the alternating magnetic field's frequency. The current work examines the heat transfer and three-dimensional flow of fluid with high viscosity on a spinning disc that is stretched in a radial direction. The governing equations' symmetries are computed using Lie group theory. In the problem, there is a resemblance that can accomplish with radially stretching velocities divided into two categories, specifically, linear and power-law, by imposing limits from the boundary conditions. The literature has already covered linear stretching, but this is the first discussion of power-law stretching. The governing partial differential is turned into an ordinary differential equations system using additional similarity transformations, which are then numerically handled. The results are presented for hybrid alumina-copper/ethylene glycol ([Formula: see text]) nanofluid. The calculated findings are novel, and it has been seen that they accord quite well with those of the earlier extended literature. It has been found that hybrid nanofluid flow outperforms nanofluid flow in terms of Nusselt number or heat transfer rate. The heat transmission in the fluid is reduced as the Prandtl number is increased. The heat transfer increases as dimensionless magnetic field intensity [Formula: see text] increases. Also, axial velocity and radial velocity decrease as magnetic field intensity increases. As the ferromagnetic interaction parameter is raised, the efficiency of heat transmission decreased. For non-linear stretching with stretching parameter 0 < m < 1, the velocity decreases with the increase in m.

9.
Sci Rep ; 12(1): 14602, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36028586

ABSTRACT

The present model deals with the consequence of Dufour, activation energy, and generation of heat on electromagnetohydrodynamic flow of hyperbolic tangent nanofluid via a stretching sheet. This offers a broad significance in several engineering fields. With adequate similarity variables, the regulating governing equations of PDEs are renovated into nonlinear ODEs. The numerical output of the produced ordinary differential equations is conducted with MATLAB bvp4c. The influence of increasing features on temperature, velocity, concentration patterns, drag force coefficient, Sherwood number and Nusselt number is depicted graphically and numerically. Hence, the resultant conclusions are confirmed utilising contrast with earlier output. Interestingly, the activation energy retards the nanofluid's tangential hyperbolic concentration distribution and the rise in temperature of the hyperbolic tangential nanofluid flow is traceable to an increase in the Dufour effect, However, the electromagnetohydrodynamic variable increases the velocity distribution, which influences the Power law index. Conclusively, the rate of heat transfer is inhibited when the thermophoresis parameter, heat source and the Weissenberg number are enhanced.

10.
Nanomaterials (Basel) ; 12(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35889597

ABSTRACT

In this work, we have performed an investigation to increase our understanding of the motion of a hybrid nanofluid trapped inside a three-dimensional container. The room also includes a three-dimensional heated obstacle of an elliptic cross-section. The top wall of space is horizontally movable and adiabatic, while the lower part is zigzagged and thermally insulated as well. The lateral walls are cold. The container's space is completely replete with Al2O3-Cu/water; the concentration of nanoparticles is 4%. The space is also characterized by the permeability, which is given by the value of the Darcy number (limited between 10-5 and 10-2). This studied system is immersed in a magnetic field with an intensity is defined in terms of Hartmann number (limited between 0 and 100). The thermal buoyancy has a constant impact (Gr = 1000). This study investigates the influences of these parameters and the inclination angle of the obstacle on the heat transfer coefficient and entropy generation. The Galerkin finite element method (GFEM) was the principal technique for obtaining the solution of the main partial equations. Findings from our work may be exploited to depict the conditions for which the system is effective in thermal cooling and the case in which the system is effective in thermal insulation.

11.
Nanomaterials (Basel) ; 12(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893487

ABSTRACT

Thermal energy storage via the use of latent heat and phase transition materials is a popular technology in energy storage systems. It is vital to research different thermal enhancement techniques to further improve phase transition materials' weak thermal conductivity in these systems. This work addresses the creation of a basic shell and a tube thermal storage device with wavy outer walls. Then, two key methods for thermal augmentation are discussed: fins and the use of a nano-enhanced phase change material (NePCM). Using the enthalpy-porosity methodology, a numerical model is developed to highlight the viability of designing such a model utilizing reduced assumptions, both for engineering considerations and real-time predictive control methods. Different concentrations of copper nanoparticles (0, 2, and 4 vol%) and wavenumbers (4,6 and 8) are investigated in order to obtain the best heat transmission and acceleration of the melting process. The time required to reach total melting in the studied TES system is reduced by 14% and 31% in the examined TES system, respectively, when NePCM (4 vol% nanoparticles) and N = 8 are used instead of pure PCM and N = 4. The finding from this investigation could be used to design a shell-and-tube base thermal energy storage unit.

12.
Sci Rep ; 12(1): 11521, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35798795

ABSTRACT

The current paper discusses the numerical simulation results of the NePCM melting process inside an annulus thermal storage system. The TES system consists of a wavy shell wall and a cylindrical tube equipped with three fins. The enthalpy-porosity method was utilized to address the transient behavior of the melting process, while the Galerkin FE technique was used to solve the system governing equations. The results were displayed for different inner tube positions (right-left-up and down), inner cylinder rotation angle (0 ≤ α ≤ 3π/2), and the nano-additives concentration (0 ≤ ϕ ≤ 0.04). The findings indicated that high values of nano-additives concentration (0.4), bigger values of tube rotation angle (3π/2), and location of the tube at the lower position accelerated the NePCM melting process.

14.
Nanomaterials (Basel) ; 12(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35683666

ABSTRACT

The present paper explores the two-dimensional (2D) incompressible mixed-convection flow of magneto-hydrodynamic Eyring-Powell nanofluid through a nonlinear stretching surface in the occurrence of a chemical reaction, entropy generation, and Bejan number effects. The main focus is on the quantity of energy that is lost during any irreversible process of entropy generation. The system of entropy generation was examined with energy efficiency. The set of higher-order non-linear partial differential equations are transformed by utilizing non-dimensional parameters into a set of dimensionless ordinary differential equations. The set of ordinary differential equations are solved numerically with the help of the finite element method (FEM). The illustrative set of computational results of Eyring-Powell (E-P) flow on entropy generation, Bejan number, velocity, temperature, and concentration distributions, as well as physical quantities are influenced by several dimensionless physical parameters that are also presented graphically and in table-form and discussed in detail. It is shown that the Schemit number increases alongside an increase in temperature, but the opposite trend occurs in the Prandtl number. Bejan number and entropy generation decline with the effect of the concentration diffusion parameter, and the results are shown in graphs.

15.
Sci Rep ; 12(1): 9219, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35654805

ABSTRACT

Thermal performance can be enhanced due to the mixing of nanoparticles in base fluid. This research discusses the involvement of ternary hybrid nanoparticles in the mixture of pseudo-plastic fluid model past over a two dimensional porous stretching sheet. Modelling of energy equation is carried out in the presence of external heat source or sink and viscous dissipation. The flow presenting equations and derived in Cartesian coordinate system under usual boundary layer theory in the form of complex coupled partial differential equations (PDEs). The derived PDEs have been converted into corresponding ordinary differential equations (ODEs) with the engagement of suitable transformation. The engineers, scientists and mathematicians have great interest in the solution of differential equations because to understand the real physics of the problem. Here, finite element scheme has been used to approximate the solution of the converted problem. The contribution of several emerging parameters on solution have been displayed through graphs and discussed. It is recommended that the finite element method can be engaged to approximate the solution of nonlinear problems arising in modelling the problem in mathematical physics.

16.
Nanomaterials (Basel) ; 12(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35564178

ABSTRACT

Nanofluids have become important working fluids for many engineering applications as they have better thermal properties than traditional liquids. Thus, this paper addresses heat transfer rates and entropy generation for a Fe3O4/MWCNT-water hybrid nanoliquid inside a three-dimensional triangular porous cavity with a rotating cylinder. The studied cavity is heated by a hot wavy wall at the bottom and subjected to a magnetic field. This problem is solved numerically using the Galerkin finite element method (GFEM). The influential parameters considered are the rotating cylinder speed, Hartmann number (Ha), Darcy number (Da), and undulation number of the wavy wall. The results showed that higher Da and lower Ha values improved the heat transfer rates in the cavity, which was demonstrated by a higher Nusselt number and flow fluidity. The entropy generation due to heat losses was also minimized for the enhanced heat transfer rates. The decrease in Ha from 100 and 0 improved the heat transfer by about 8%, whereas a high rotational speed and high Da values yield optimal results. For example, for Ω = 1000 rad/s and Da = 10-2, the enhancement in the average Nusselt number is about 38% and the drop in the Bejan number is 65% compared to the case of Ω = 0 rad/s and Da = 10-5. Based on the applied conditions, it is recommended to have a high Da, low Ha, one undulation for the wavy wall, and high rotational speed for the cylinder in the flow direction.

17.
Nanomaterials (Basel) ; 12(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35564220

ABSTRACT

This study aimed to analyze the momentum and thermal transport of a rotating dusty Maxwell nanofluid flow on a magnetohydrodynamic Darcy-Forchheimer porous medium with conducting dust particles. Nanouids are the most important source of effective heat source, having many applications in scientific and technological processes. The dust nanoparticles with superior thermal characteristics offer a wide range of uses in chemical and mechanical engineering eras and modern technology. In addition, nanofluid Cu-water is used as the heat-carrying fluid. The governing equations for the two phases model are partial differential equations later transmuted into ordinary ones via similarity transforms. An efficient code for the Runge-Kutta technique with a shooting tool is constructed in MATLAB script to obtain numeric results. The study is compared to previously published work and determined to be perfect. It is observed that the rising strength of the rotating and magnetic parameters cause to recede the x- and y-axis velocities in the two phase fluid, but the temperature function exhibits an opposite trend. By improving the diameter of nanoparticles Dm, the axial velocity improves while transverse velocity and temperature show the opposite behaviors. Furthermore, it is reported that the inclusion of dust particles or nanoparticles both cause to decline the primary and secondary velocities of fluid, and also dust particles decrease the temperature.

18.
Sci Rep ; 12(1): 7636, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35538184

ABSTRACT

In this paper, we consider an isothermal glass tube drawing model consisting of three coupled nonlinear partial differential equations. The steady-state solution of this model is required in order to investigate its stability. With the given initial and boundary conditions, it is not possible to determine an analytical solution of this model. The difficulty lies in determining the constants of integrations while solving the second order ordinary differential equation analytically appearing in the steady-state model. To overcome this difficulty, we present a numerical based approach for the first time to develop an analytical solution of the steady-state isothermal tube drawing model. We use a numerical technique called shooting method to convert the boundary value problem into a set of initial value problems. Once the model has been converted into a system of differential equations with initial values, an integrating technique is implemented to develop the analytical solution. The computed analytical solution is then compared with the numerical solution to better understand the accuracy of obtained solution with necessary discussions.

19.
PLoS One ; 17(5): e0265026, 2022.
Article in English | MEDLINE | ID: mdl-35503769

ABSTRACT

The bioconvection flow of tiny fluid conveying the nanoparticles has been investigated between two concentric cylinders. The contribution of Lorenz force is also focused to inspect the bioconvection thermal transport of tiny particles. The tiny particles are assumed to flow between two concentric cylinders of different radii. The first cylinder remains at rest while flow is induced due to second cylinder which rotates with uniform velocity. Furthermore, the movement of tiny particles follows the principle of thermophoresis and Brownian motion as a part of thermal and mass gradient. Similarly, the gyro-tactic microorganisms swim in the nanofluid as a response to the density gradient and constitute bio-convection. The problem is modeled by using the certain laws. The numerical outcomes are computed by using RKF -45 method. The graphical simulations are performed for flow parameters with specific range like 1≤Re≤5, 1≤Ha≤5, 0.5≤Nt≤2.5, 1≤Nb≤3, 0.2≤Sc≤1.8, 0.2≤Pe≤1.0 and 0.2≤Ω≤1.0. It is observed that the flow velocity decreases with the increase in the Hartmann number that signifies the magnetic field. This outcome indicates that the flow velocity can be controlled externally through the magnetic field. Also, the increase in the Schmidt numbers increases the nanoparticle concentration and the motile density.


Subject(s)
Convection , Nanoparticles , Magnetic Fields , Motion
20.
Sci Rep ; 12(1): 5445, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35361813

ABSTRACT

The study considers the effect of thermophoresis particle deposition on the flow properties of second grade fluid with variable viscosity, variable thermal conductivity and variable concentration diffusivity subjected to a convective boundary condition. To further describe the transport phenomenon, the special case of assisting and opposing flows is explored. Using similarity transformations, the governing equations of the fluid model are transformed and parameterized into a system of nonlinear ordinary differential equations. The approximate analytic solution of a dimensionless system is obtained through the Optimal Homotopy Analysis Method (OHAM). It is observed that velocity and temperature distributions are decreasing functions of the second grade parameter for both assisting and opposing flows. When the thermophoretic parameter is increased, the concentration distributions at the first and fourth orders of chemical reaction decrease. For both opposing and assisting flows, velocity distributions are enhanced due to larger temperature-dependent viscous parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...