Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 203: 116415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723552

ABSTRACT

This study assessed the occurrence, origins, and potential risks of emerging perfluoroalkyl acids (PFAAs) for the first time in drinking water resources of Khyber Pakhtunkhwa, Pakistan. In total, 13 perfluoroalkyl carboxylic acids (PFCAs) with carbon (C) chains C4-C18 and 4 perfluoroalkyl sulfonates (PFSAs) with C chains C4-C10 were tested in both surface and ground drinking water samples using a high-performance liquid chromatography system (HPLC) equipped with an Agilent 6460 Triple Quadrupole liquid chromatography-mass spectrometry (LC-MS) system. The concentrations of ∑PFCAs, ∑PFSAs, and ∑PFAAs in drinking water ranged from 1.46 to 72.85, 0.30-8.03, and 1.76-80.88 ng/L, respectively. Perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) were the dominant analytes in surface water followed by ground water, while the concentration of perfluorobutane sulfonate (PFBS), perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), and perfluorododecanoic acid (PFDoDA) were greater than long-chain PFOA and PFOS. The correlation statistics, which showed a strong correlation (p < 0.05) between the PFAA analytes, potentially indicated the fate of PFAAs in the area's drinking water sources, whereas the hierarchical cluster analysis (HCA) and principal component analysis (PCA) statistics identified industrial, domestic, agricultural, and commercial applications as potential point and non-point sources of PFAA contamination in the area. From risk perspectives, the overall PFAA toxicity in water resources was within the ecological health risk thresholds, where for the human population the hazard quotient (HQ) values of individual PFAAs were < 1, indicating no risk from the drinking water sources; however, the hazard index (HI) from the ∑PFAAs should not be underestimated, as it may significantly result in potential chronic toxicity to exposed adults, followed by children.


Subject(s)
Drinking Water , Environmental Monitoring , Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Drinking Water/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Pakistan , Alkanesulfonic Acids/analysis , Humans , Environmental Exposure/statistics & numerical data , Multivariate Analysis
2.
Int J Phytoremediation ; 26(6): 975-992, 2024.
Article in English | MEDLINE | ID: mdl-37968930

ABSTRACT

The current study aims to use a facile and novel method to remove Congo red (CR) and Methyl Orange (MO) dyes from contaminated water with Maize offal biomass (MOB) and its nanocomposite with magnetic nanoparticles (MOB/MNPs). The MOB and MOB/MNPs were characterized with Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), BET, XRD and point of zero charge (pHPZC). The influence of initial CR and MO levels (20-320 mg/L), adsorbent dosage (1-3 g/L), pH (3-9), co-exiting ions, temperature (25-45 °C) and time (15-180 min) was estimated. The findings demonstrated that MOB/MNPs exhibited excellent adsorption of 114.75 and 29.0 mg/g for CR and MO dyes, respectively while MOB exhibited 81.35 and 23.02 mg/g adsorption for CR and MO dyes, respectively at optimum pH-5, and dose 2 g/L. Initially, there was rapid dye removal which slowed down until equilibrium was reached. The interfering/competing ions in contaminated water and elevated temperature favored the dyes sequestration. The MOB/MNPs exhibited tremendous reusability and stability. The dyes adsorption was spontaneous, and exothermic with enhanced randomness. The adsorption effects were well explained with Freundlich model, pseudo second order and Elovich models. It is concluded that MOB/MNPs showed excellent, eco-friendly, and cost-effective potential to decontaminate the water.


Nanocomposite of Maize offal biomass demonstrated higher dyes removal.FTIR, SEM, BET, XRD and pHPZC provided vital evidence for dyes adsorption.MOB/MNPs displayed excellent stability and reusability for dyes adsorption.Groundwater samples exposed a higher dyes removal.Results were validated with equilibrium and kinetic adsorption models.


Subject(s)
Azo Compounds , Nanocomposites , Water Pollutants, Chemical , Congo Red , Coloring Agents/chemistry , Zea mays , Biomass , Biodegradation, Environmental , Adsorption , Ions , Water , Nanocomposites/chemistry , Magnetic Phenomena , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
3.
Ecotoxicol Environ Saf ; 267: 115564, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37890248

ABSTRACT

The use of Advance Oxidation Process (AOPs) has been extensively examined in order to eradicate organic pollutants. This review assesses the efficacy of photolysis, O3 based (O3/UV, O3/H2O2, O3/H2O2/UV, H2O2/UV, Fenton, Fenton-like, hetero-system) and sonochemical and electro-oxidative AOPs in this regard. The main purpose of this review and some suggestions for the advancement of AOPs is to facilitate the elimination of toxic organic pollutants. Initially proposed for the purification of drinking water in 1980, AOPs have since been employed for various wastewater treatments. AOPs technologies are essentially a process intensification through the use of hybrid methods for wastewater treatment, which generate large amounts of hydroxyl (•OH) and sulfate (SO4·-) radicals, the ultimate oxidants for the remediation of organic pollutants. This review covers the use of AOPs and ozone or UV treatment in combination to create a powerful method of wastewater treatment. This novel approach has been demonstrated to be highly effective, with the acceleration of the oxidation process through Fenton reaction and photocatalytic oxidation technologies. It is clear that Advance Oxidation Process are a helpful for the degradation of organic toxic compounds. Additionally, other processes such as •OH and SO4·- radical-based oxidation may also arise during AOPs treatment and contribute to the reduction of target organic pollutants. This review summarizes the current development of AOPs treatment of wastewater organic pollutants.


Subject(s)
Environmental Pollutants , Hydroxyl Radical , Hydrogen Peroxide , Wastewater , Oxidation-Reduction
4.
Mar Pollut Bull ; 195: 115460, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660661

ABSTRACT

This study analyzed the levels of heavy metals bioaccumulation in commonly consumed riverine fish species, including G. cavia, T. macrolepis, G. gotyla, S. plagiostomus, and M. armatus from River Swat in Pakistan, and quantify their potential risk to children and adults in general and fisherfolk communities using multiple pollution and risk assessment approaches. The highest metal detected by inductive coupled plasma mass spectrometry (ICP-MS) was Zn, which ranged from 49.61 to 116.83 mg/kg, followed by Fe (19.25-101.33 mg/kg) > Mn (5.25-40.35 mg/kg) > Cr (3.05-14.59 mg/kg) > Ni (4.26-11.80 mg/kg) > Al (1.59-12.25 mg/kg) > Cu (1.24-8.59 mg/kg) > Pb (0.29-1.95 mg/kg) > Co (0.08-0.46 mg/kg) > Cd (0.01-0.29 mg/kg), demonstrating consistent fluctuation with the safe recommendations of global regulatory bodies. The average bioaccumulation factor (BAF) values in the examined fish species were high (BAF > 5000) for Pb, Zn, Mn, Cu, Cr, Ni, and Cd, bioaccumulate (1000 > BAF < 5000) for Co, and probable accumulative (BAF <1000) for Fe, and Al, while the overall ∑heavy metals pollution index (MPI) values were greater than one (MPI > 1) indicating sever heavy metals toxicity in G. cavia, followed by S. plagiostomus, M. armatus, G. gotyla, and T. macrolepis. The multivariate Pearson's correlation analysis identified the correlation coefficients between heavy metal pairs (NiCr, CuCr, PbCr, AlCo, CuNi, and PbNi), the hierarchical cluster analysis (CA) determined the origin by categorizing heavy metal accumulation into Cluster-A, Cluster-B, and Cluster-C, and the principal component analysis (PCA) discerned nearby weathering, mining, industrial, municipal, and agricultural activities as the potential sources of heavy metals bioaccumulation in riverine fish. As per human risk perspective, S.plagiostomus contributed significantly to the estimated daily intake (EDI) of heavy metals, followed by G.cavia > M.armatus > G.gotyla > T.macrolepis in dependent children and adults of the fisherfolk followed by the general population. The non-carcinogenic target hazard quotient (THQ) and hazard index (HI) values for heavy metal intake through fish exposure were < 1, while the carcinogenic risk (CR) for individual metal intake and the total carcinogenic risk (TCR) for cumulative Cr, Cd, and Pb intake were within the risk threshold of 10-6-10-4, suggesting an acceptable to high non-carcinogenic and carcinogenic risk for both children and adults in the fisherfolk, followed by the general population.


Subject(s)
Cadmium , Metals, Heavy , Adult , Child , Humans , Animals , Guinea Pigs , Cadmium/analysis , Rivers/chemistry , Pakistan , Lead/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Risk Assessment , Fishes
5.
RSC Adv ; 13(30): 20430-20442, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37435380

ABSTRACT

Organochlorine pesticides (OCPs) have been used extensively as insecticides and herbicides. This study investigates the occurrence of lindane in surface water from the Peshawar valley (i.e., Peshawar, Charsadda, Nowshera, Mardan and Swabi districts of Khyber Pakhtunkhwa, Pakistan). Out of 75 samples tested (i.e., 15 samples from each district), 13 samples (including 2 from Peshawar, 3 from Charsadda, 4 from Nowshera, 1 from Mardan, and 3 from Swabi) are found to be contaminated with lindane. Overall, the detection frequency is 17.3%. The maximum concentration of lindane is detected in a water sample from Nowshera and found to be 2.60 µg L-1. Furthermore, the degradation of lindane in the water sample from Nowshera, containing the maximum concentration, is investigated by simulated solar-light/TiO2 (solar/TiO2), solar/H2O2/TiO2 and solar/persulfate/TiO2 photocatalysis. The degradation of lindane by solar/TiO2 photocatalysis is 25.77% after 10 h of irradiation. The efficiency of the solar/TiO2 process is significantly increased in the presence of 500 µM H2O2 and 500 µM persulfate (PS) (separately), represented by 93.85 and 100.00% lindane removal, respectively. The degradation efficiency of lindane is lower in natural water samples as compared to Milli-Q water, attributed to water matrix effect. Moreover, the identification of degradation products (DPs) shows that lindane follows similar degradation pathways in natural water samples as the one in Milli-Q water. The results show that the occurrence of lindane in surface waters of Peshawar valley is a matter of great concern for human beings and the environment. Interestingly, H2O2 and PS assisted solar/TiO2 photocatalysis is an effective method for the removal of lindane from natural water.

6.
Environ Technol ; : 1-14, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37259947

ABSTRACT

In this research work, surface-modified nano zerovalent copper (nZVC) was prepared using a simple borohydride reduction method. The spectroscopic and crystallographic results revealed the successful synthesis of surface-modified nano zerovalent copper (nZVC) using solvents such as ethanol (ETOH), ethylene glycol (EG) and tween80 (T80). The as-synthesized material was fully characterized for morphological surface and crystal structural properties. The results indicated that EG provides an excellent synthesis environment to nZVC compared to ETOH and T80 in terms of good dispersion, high surface area and excellent catalytic properties. The catalytic efficiency of nZVC/EG was investigated alone and with peroxymonosulphate (PMS) in the absence of light. The degradation results demonstrated that the involvement of PMS synergistically boosted the catalytic efficiency of synthesized nZVC/EG material. Furthermore, the degradation products (DPs) of CBZ were determined by GC-MS and subsequently, the degradation pathways were proposed. The ecotoxicity analysis of the DPs was also explored. The proposed (nZVC/EG/PMS) system is economical and efficient and thus could be applied for the degradation of CBZ from an aquatic system after altering the degradation pathways in such a way that results in harmless products.

7.
Environ Geochem Health ; 45(12): 9003-9016, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37266751

ABSTRACT

Chromium (Cr), due to its greater contamination in aquifers and distinct eco-toxic impacts, is of greater environmental concern. This study aimed to synthesize nanocomposites of almond shells biochar (BC) with zerovalent bismuth and/or copper (Bi0/BC, Cu0/BC, and Bi0-Cu0/BC) for the removal of Cr from aqueous solution. The synthesized nanocomposites were investigated using various characterization techniques such as XRD, FTIR spectroscopy, SEM, and EDX. The Cr removal potential by the nanocomposites was explored under different Cr concentrations (25-100 mg/L), adsorbent doses (0.5-2.0 g/L), solution pH (2-8), and contact time (10-160 min). The above-mentioned advanced techniques verified successful formation of Bi0/Cu0 and their composite with BC. The synthesized nanocomposites were highly effective in the removal of Cr. The Bi0-Cu0/BC nano-biocomposites showed higher Cr removal efficiency (92%) compared to Cu0/BC (85%), Bi0/BC (76%), and BC (67%). The prepared nanocomposites led to effective Cr removal at lower Cr concentrations (25 mg/L) and acidic pH (4.0). The Cr solubility changes with pH, resulting in different degrees of Cr removal by Bi0-Cu0/BC, with Cr(VI) being more soluble and easier to adsorb at low pH levels and Cr(III) being less soluble and more difficult to adsorb at high pH levels. The experimental Cr adsorption well fitted with the Freundlich adsorption isotherm model (R2 > 0.99) and pseudo-second-order kinetic model. Among the prepared nanocomposites, the Bi0-Cu0/BC showed greater stability and reusability. It was established that the as-synthesized Bi0-Cu0/BC nano-biocomposite showed excellent adsorption potential for practical Cr removal from contaminated water.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Chromium/analysis , Copper , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Water/chemistry , Adsorption , Kinetics , Hydrogen-Ion Concentration
8.
Environ Geochem Health ; 45(12): 8989-9002, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37154973

ABSTRACT

Batch scale removal of arsenic (As) from aqueous media was explored using nano-zero valent iron (Fe0) and copper (Cu0) particles. The synthesized particles were characterized using a Brunauer-Emmett-Teller (BET) surface area analyzer, a scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). The BET result showed that the surface area (31.5 m2/g) and pore volume (0.0415 cm3/g) of synthesized Fe0 were higher than the surface area (17.56 m2/g) and pore volume (0.0287 cm3/g) of Cu0. The SEM results showed that the morphology of the Fe0 and Cu0 was flowery microspheres and highly agglomerated with thin flakes. The FTIR spectra for Fe0 showed broad and intense peaks as compared to Cu0. The effects of the adsorbent dose (1-4 g/L), initial concentration of As (2 mg/L to 10 mg/L) and solution pH (2-12) were evaluated on the removal of As. Results revealed that effective removal of As was obtained at pH 4 with Fe0 (94.95%) and Cu0 (74.86%). When the dosage increased from 1 to 4 g L-1, the As removal increased from 70.59 to 93.02% with Fe0 and from 67 to 70.59% with Cu0. However, increasing the initial As concentration decreased the As removal significantly. Health risk indices, including estimated daily intake (EDI), hazard quotient (HQ), and cancer risk (CR) were employed and a significant decline (up to 99%) in risk indices was observed in As-treated water using Fe0/Cu0. Among the adsorption isotherm models, the values of R2 showed that isothermal As adsorption by Fe0 and Cu0 was well explained by the Freundlich adsorption isotherm model (R2 > 0.98) while the kinetic experimental data was well-fitted with the Pseudo second order model. The Fe0 showed excellent stability and reusability over five sorption cycles, and it was concluded that, compared to the Cu0, the Fe0 could be a promising technology for remediating As-contaminated groundwater.


Subject(s)
Arsenic , Water Pollutants, Chemical , Copper , Water/chemistry , Iron/chemistry , Kinetics , Adsorption , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
9.
Front Chem ; 11: 1152217, 2023.
Article in English | MEDLINE | ID: mdl-37007050

ABSTRACT

The recent advancement of nanoparticles (NPs) holds significant potential for treating various ailments. NPs are employed as drug carriers for diseases like cancer because of their small size and increased stability. In addition, they have several desirable properties that make them ideal for treating bone cancer, including high stability, specificity, higher sensitivity, and efficacy. Furthermore, they might be taken into account to permit the precise drug release from the matrix. Drug delivery systems for cancer treatment have progressed to include nanocomposites, metallic NPs, dendrimers, and liposomes. Materials' mechanical strength, hardness, electrical and thermal conductivity, and electrochemical sensors are significantly improved using nanoparticles (NPs). New sensing devices, drug delivery systems, electrochemical sensors, and biosensors can all benefit considerably from the NPs' exceptional physical and chemical capabilities. Nanotechnology is discussed in this article from a variety of angles, including its recent applications in the medical sciences for the effective treatment of bone cancers and its potential as a promising option for treating other complex health anomalies via the use of anti-tumour therapy, radiotherapy, the delivery of proteins, antibiotics, and vaccines, and other methods. This also brings to light the role that model simulations can play in diagnosing and treating bone cancer, an area where Nanomedicine has recently been formulated. There has been a recent uptick in using nanotechnology to treat conditions affecting the skeleton. Consequently, it will pave the door for more effective utilization of cutting-edge technology, including electrochemical sensors and biosensors, and improved therapeutic outcomes.

10.
Int J Phytoremediation ; 25(7): 929-939, 2023.
Article in English | MEDLINE | ID: mdl-36121769

ABSTRACT

The present study aims to prepare novel quinoa biosorbent (QB), acid activated QB (QB/Acid) and its nanocomposite with magnetic nanoparticles (QB/MNPs) for batch scale Cr removal from contaminated water. The Cr adsorption was systematically studied at different pH (2-9), adsorbent dosage (1-3 g/L), initial concentration (25-200 mg/L), contact time (180 min) and competing ions in water. Maximum Cr adsorption was observed onto QB/MNPs (57.4 mg/L), followed by QB/Acid (46.35 mg/g) and QB (39.9 mg/g). The Cr removal by QB/MNPs was higher than QB/Acid and QB. Results revealed that the highest Cr removal was obtained at optimum pH 4, 25 mg/L, and 2 g/L dosage. The FTIR spectra displayed various functional groups on adsorbents surface serving as a potential scaffold to remove Cr from contaminated water. The equilibrium and kinetic Cr adsorption data best fitted with Freundlich and pseudo-second order models, respectively (R2 ≥ 0.96). The QB/MNPs showed excellent reusability in five adsorption/desorption cycles (4.7% decline) with minor leaching of Fe (below threshold level). The coexisting ions in groundwater showed an inhibitory effect on Cr sequestration (5%) from water. The comparison of Cr adsorption by QB/MNPs and QB/Acid showed better potential for Cr sequestration than various previously explored adsorbents in the literature.


Quinoa is a cereal crop and after harvesting quinoa straws are either burnt or thrown away which can cause several environmental problems. It would be beneficial to utilize quinoa straws and its modified forms as adsorbents for the water remediation. Therefore, current study aims to estimate the adsorption capacity of quinoa biomass as biosorbent (QB) and its modifications (QB/Acid and QB/MNPs) to treat Cr (VI) contaminated water. The influence of various parameters governing the Cr removal from water has been evaluated. The reusability of QB/MNPs has also been evaluated for its economical use without losing effectiveness for Cr removal from water. The comparison of Cr adsorption by QB/MNPs and QB/Acid showed better adsorption potential for Cr sequestration than various previously explored adsorbents in the literature.


Subject(s)
Chenopodium quinoa , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Water Purification/methods , Biodegradation, Environmental , Chromium , Adsorption , Water , Kinetics , Ions , Magnetic Phenomena
11.
Ecotoxicol Environ Saf ; 249: 114455, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38321674

ABSTRACT

Cobalt-based catalysts are expected as one of the most promising peroxymonosulfate (PMS) activators for the removal of organic pollutants from industrial wastewater. However, the easy agglomeration, difficult separation, and secondary pollution of cobalt ions limit their practical application. In this study, a novel, highly efficient, reusable cobalt and nitrogen co-doped monolithic carbon foam (Co-N-CMF) was utilized to activate PMS for ultrafast pollutant degradation. Co-N-CMF (0.2 g/L) showed ultrafast catalytic kinetics and higher total organic carbon (TOC) removal efficiency. Bisphenol A, ciprofloxacin, 2,4-dichlorophenoxyacetic acid, and 2,4-dichlorophenol could be completely degraded after 2, 4, 5, and 5 min, and the TOC removal efficiencies were 77.4 %, 68.9 %, 72.8 %, and 79.8 %, respectively, corresponding to the above pollution. The sulfate radical (SO4•-) was the main reactive oxygen species in Co-N-CMF/PMS based on electron paramagnetic resonance. The ecological structure-activity relationship program analysis via the quantitative structure activity relationship analysis and phytotoxicity assessment revealed that the Co-N-CMF/PMS system demonstrates good ecological safety and ecological compatibility. The Co-N-CMF catalyst has good catalytic activity and facile recycling, which provides a fine method with excellent PMS activation capacity for 2,4-dichlorophenol elimination from simulated industrial wastewater. This study provides new insights into the development of monolithic catalysts for ultrafast wastewater treatment via PMS activation.


Subject(s)
Carbon , Chlorophenols , Environmental Pollutants , Carbon/chemistry , Wastewater , Cobalt/chemistry , Nitrogen , Peroxides/chemistry
12.
J Photochem Photobiol B ; 234: 112544, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35994971

ABSTRACT

Public health is a major concern globally, owing to the presence of industrial dyes in the effluent. Nanoparticles with green synthesis are an enthralling research field with various applications. This study deals with investigating the photocatalytic potential of Fe-oxide nanoparticles (FeO-NPs) for the degradation of methylene blue dye and their potential biomedical investigations. Biosynthesis using Anthemis tomentosa flower extract showed to be an effective method for the synthesis of FeO-NPs. The freshly prepared FeO-NPs were characterized through UV/Vis spectroscopy showing clear peak at 318 nm. The prepared FeO-NPs were of smaller size and spherical shape having large surface area and porosity with no aggregations. The FeO-NPs were characterized using XRD, FTIR, HRTEM, SEM and EDX. The HRTEM results showed that the particle size of FeO-NPs was 60-90 nm. The antimicrobial properties of FeO-NPs were investigated against two bacterial Staphylococcus aureus 13 (±0.8) and Klebsiella pneumoniae 6(±0.6) and three fungal species Aspergillus Niger, Aspergillus flavus, and Aspergillus fumigatus exhibiting a maximum reduction of 57% 47% and 50%, respectively. Moreover, FeO-NPs exhibited high antioxidant properties evaluated against ascorbic acid. Overall, this study showed high photocatalytic, antimicrobial, and antioxidant properties of FeO-NPs owing to their small size and large surface area. However, the ecotoxicity study of methylene blue degradation products showed potential toxicity to aquatic organisms.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Water Pollutants , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants , Magnetic Iron Oxide Nanoparticles , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Methylene Blue/chemistry , Plant Extracts/chemistry
13.
Health Promot Chronic Dis Prev Can ; 42(6): 229-237, 2022 Jun.
Article in English, French | MEDLINE | ID: mdl-35766912

ABSTRACT

INTRODUCTION: High levels of income inequality and increased opioid-related harm across Canada bring into question the role of socioeconomic status (SES) in the opioid epidemic. Only a few studies have examined this association, and most of those have analyzed this issue on a provincial level. This study examined the association between opioid-related health outcomes and SES, and investigated rate ratios over time. METHODS: Administrative databases were used to identify opioid-related mortality, hospitalization and emergency department visits between 2000 and 2017. Patient's postal code was linked to the quintile of median household income at the forward sortation area level. Crude rates and age- and sex-adjusted rates in each quintile were calculated, as well as the adjusted rate ratio of average annual rates between the lowest and highest quintiles. The significance of the time trend of rate ratios for all outcomes was examined using linear regression. RESULTS: A stepped gradient of opioid-related outcomes across all income quintiles emerged from these data. For mortality, hospitalization and emergency department visits, the average annual rate ratio between lowest quintile and highest quintile was 3.8, 4.3 and 4.9, respectively. These ratios were generally stable and consistent over the study period, albeit the opioid-related mortality SES gap decreased gradually (p < 0.01). CONCLUSION: Area income quintile was found to be highly associated with opioid outcomes. Psychosocial factors (stress, unemployment, housing insecurity) that are typically concentrated in low SES areas may play a significant role in the opioid epidemic. Health policies should address these factors in order to provide effective solutions.


Subject(s)
Analgesics, Opioid , Opioid Epidemic , Canada/epidemiology , Emergency Service, Hospital , Hospitalization , Humans , Social Class , Socioeconomic Factors
14.
Environ Sci Pollut Res Int ; 29(42): 63041-63056, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35445919

ABSTRACT

Binary composite of zerovalent iron and titanium dioxide (Fe0/TiO2) was synthesized for the catalytic removal of dichlorophene (DCP) in the presence of peroxymonosulfate (PMS). The as-prepared composite (Fe0/TiO2) exhibits synergistic effect and enhanced properties like improved catalytic activity of catalyst and greater magnetic property for facile recycling of catalyst. The results showed that without addition of PMS at reaction time of 50 min, the percent degradation of DCP by TiO2, Fe0, and Fe0/TiO2 was just 5%, 11%, and 12%, respectively. However, with the addition of 0.8 mM PMS, at 10 min of reaction time, the catalytic degradation performance of Fe0, TiO2, and Fe0/TiO2 was significantly improved to 82%, 18%, and 88%, respectively. The as-prepared catalyst was fully characterized to evaluate its structure, chemical states, and morphology. Scanning electron microscopy results showed that in composite TiO2 causes dispersion of agglomerated iron particles which enhances porosity and surface area of the composites and X-ray diffraction (XRD), energy dispersive X-ray (EDX), and Fourier-transform infrared (FTIR) results revealed successful incorporation of Fe0, and oxides of Fe and TiO2 in the composite. The adsorption-desorption analysis verifies that the surface area of Fe0/TiO2 is significantly larger than bare Fe0 and TiO2. Moreover, the surface area, particle size, and crystal size of Fe0/TiO2 was surface area = 85 m2 g-1, particle size = 0.35 µm, and crystal size = 0.16 nm as compared to TiO2 alone (surface area = 22 m2 g-1, particle size = 4.25 µm, and crystal size = 25.4 nm) and Fe0 alone (surface area = 65 m2 g-1, particle size = 0.9 µm, and crystal size = 7.87 nm). The as-synthesized material showed excellent degradation performance in synthesized wastewater as well. The degradation products and their toxicities were evaluated and the resulted degradation mechanism was proposed accordingly. The toxicity values decreased in order of DP1 > DP5 > DP2 > DP3 > DP4 and the LC50 values toward fish for 96-h duration decreased from 0.531 to 67.2. This suggests that the proposed technology is an excellent option for the treatment of antibiotic containing wastewater.


Subject(s)
Dichlorophen , Iron , Animals , Anti-Bacterial Agents , Catalysis , Iron/chemistry , Oxidative Stress , Peroxides , Titanium/chemistry , Wastewater , Water
15.
Environ Pollut ; 305: 119291, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35427680

ABSTRACT

The current study is the first attempt to prepare nanocomposites of Eleocharis dulcis biochar (EDB) with nano zero-valent Copper (nZVCu/EDB) and magnetite nanoparticles (MNPs/EDB) for batch and column scale sequestration of Congo Red dye (CR) from synthetic and natural water. The adsorbents were characterized with advanced analytical techniques. The impact of EDB, MNPs/EDB and nZVCu/EDB dosage (1-4 g/L), pH (4-10), initial concentration of CR (20-500 mg/L), interaction time (180 min) and material type to remove CR from water was examined at ambient temperature. The CR removal followed sequence of nZVCu/EDB > MNPs/EDB > EDB (84.9-98% > 77-95% > 69.5-93%) at dosage 2 g/L when CR concentration was increased from 20 to 500 mg/L. The MNPs/EDB and nZVCu/EDB showed 10.9% and 20.1% higher CR removal than EDB. The adsorption capacity of nZVCu/EDB, MNPs/EDB and EDB was 212, 193 and 174 mg/g, respectively. Freundlich model proved more suitable for sorption experiments while pseudo 2nd order kinetic model well explained the adsorption kinetics. Fixed bed column scale results revealed excellent retention of CR (99%) even at 500 mg/L till 2 h when packed column was filled with 3.0 g nZVCu/EDB, MNPs/EDB and EDB. These results revealed that nanocomposites with biochar can be applied efficiently for the decontamination of CR contaminated water.


Subject(s)
Eleocharis , Nanocomposites , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal/chemistry , Congo Red , Copper , Ferrosoferric Oxide , Hydrogen-Ion Concentration , Kinetics , Water , Water Pollutants, Chemical/analysis , Water Purification/methods
16.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35159832

ABSTRACT

Water is obligatory for sustaining life on Earth. About 71% of the Earth's surface is covered in water. However, only one percent of the total water is drinkable. The presence of contaminants in wastewater, surface water, groundwater, and drinking water is a serious threat to human and environmental health. Their toxic effects and resistance towards conventional water treatment methods have compelled the scientific community to search for an environmentally friendly method that could efficiently degrade toxic contaminants. In this regard, visible light active photocatalysts have proved to be efficient in eliminating a wide variety of water toxins. A plethora of research activities have been carried out and significant amounts of funds are spent on the monitoring and removal of water contaminants, but relatively little attention has been paid to the degradation of persistent water pollutants. In this regard, nanoparticles of doped ZnO are preferred options owing to their low recombination rate and excellent photocatalytic and antimicrobial activity under irradiation of solar light. The current article presents the roles of these nanomaterials for wastewater treatment from pollutants of emerging concern.

17.
Int J Phytoremediation ; 24(12): 1231-1242, 2022.
Article in English | MEDLINE | ID: mdl-35075957

ABSTRACT

In this study, biochar was prepared from Sidr plant leaves and used for the treatment of ciprofloxacin (CIP)-contaminated water. CIP is important class of emerging water pollutants from pharmaceutical industries. The biochar showed 65% adsorption efficiency and 43.48 mg/g adsorption capacity of CIP. Adsorption efficiency as well as adsorption capacity were improved to 91% and 62.50 mg/g, respectively, by phosphoric acid (H3PO4) modified biochar. Removal of CIP by the prepared biochar was due to different surface functional groups of CIP and biochar as revealed from the study of different characterization analyses. The presence of PO43- group in modified biochar led to maximum binding of CIP. Also, the modified biochar showed higher reusability potential and less leaching of ions when compared to the raw biochar. Removal of CIP was affected by concentrations of CIP, the amount of biochar and different pH's; the maximum removal of CIP was achieved at pH 4. The Freundlich and pseudo-first-order models best fitted the removal of CIP by modified biochar. Advanced characterization techniques were applied to investigate surface and physiological characteristics of the biochar and modified biochar. The modification showed high impact on the performance and stability of biochar. The study showed significant impacts of modification on the potential of the biochar for treatment of CIP-contaminated water.


Subject(s)
Ciprofloxacin , Water Pollutants, Chemical , Adsorption , Biodegradation, Environmental , Charcoal/chemistry , Ciprofloxacin/analysis , Ciprofloxacin/chemistry , Kinetics , Water/analysis , Water Pollutants, Chemical/chemistry
18.
Chemosphere ; 287(Pt 4): 132331, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34607113

ABSTRACT

This study reported Fe doped zinc oxide (Fe-ZnO) synthesis to degrade chlorpyrifos (CPY), a highly toxic organophosphate pesticide and important sources of agricultural wastes. Fourier transform infrared, X-ray diffraction, scanning electron microscope, and energy-dispersive X-ray spectroscopic analyses showed successful formation of the Fe-ZnO with highly crystalline and amorphous nature. Water collected from agricultural wastes were treated with Fe-ZnO and the results showed 67% degradation of CPY by Fe-ZnO versus 39% by ZnO at 140 min treatment time. Detail mechanism involving reactive oxygen species production from solar light activated Fe-ZnO and their role in degradation of CPY was assessed. Use of H2O2, peroxydisulfate (S2O82-) and peroxymonosulfate (HSO5-) with Fe-ZnO under solar irradiation promoted removal of CPY. The peroxides yielded hydroxyl (OH) and sulfate radical () under solar irradiation mediated by Fe-ZnO. Effects of several parameters including concentration of pollutant and oxidants, pH, co-existing ions, and presence of natural organic matter on CPY degradation were studied. Among peroxides, HSO5- revealed to provide better performance. The prepared Fe-ZnO showed high reusability and greater mineralization of CPY. The GC-MS analysis showed degradation of CPY resulted into several transformation products (TPs). Toxicity analysis of CPY as well as its TPs was performed and the formation of non-toxic acetate imply greater capability of the treatment technology.


Subject(s)
Chlorpyrifos , Zinc Oxide , Catalysis , Chlorpyrifos/toxicity , Hydrogen Peroxide , X-Ray Diffraction
19.
Polymers (Basel) ; 13(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641067

ABSTRACT

The wide availability and diversity of dangerous microbes poses a considerable problem for health professionals and in the development of new healthcare products. Numerous studies have been conducted to develop membrane filters that have antibacterial properties to solve this problem. Without proper protective filter equipment, healthcare providers, essential workers, and the general public are exposed to the risk of infection. A combination of nanotechnology and biosorption is expected to offer a new and greener approach to improve the usefulness of polysaccharides as an advanced membrane filtration material. Nanocellulose is among the emerging materials of this century and several studies have proven its use in filtering microbes. Its high specific surface area enables the adsorption of various microbial species, and its innate porosity can separate various molecules and retain microbial objects. Besides this, the presence of an abundant OH groups in nanocellulose grants its unique surface modification, which can increase its filtration efficiency through the formation of affinity interactions toward microbes. In this review, an update of the most relevant uses of nanocellulose as a new class of membrane filters against microbes is outlined. Key advancements in surface modifications of nanocellulose to enhance its rejection mechanism are also critically discussed. To the best of our knowledge, this is the first review focusing on the development of nanocellulose as a membrane filter against microbes.

20.
J Vasc Surg ; 74(5): 1565-1572.e1, 2021 11.
Article in English | MEDLINE | ID: mdl-33957229

ABSTRACT

OBJECTIVE: During the past two decades, the treatment of popliteal artery aneurysms (PAAs) has undergone a transformation. Although open surgical repair (OR) has remained the reference standard for treatment, endovascular repair (ER) has become an attractive alternative for select patient populations. The objective of the present study was to compare the outcomes of OR vs ER of PAAs at a single institution. METHODS: We performed a retrospective review of the medical records for all patients who had undergone repair for PAAs from 1998 to 2017. The baseline patient, anatomic, and operative characteristics and outcomes were compared between the OR and ER cohorts. Intervention and treatment were at the discretion of the surgeon. RESULTS: From 1998 to 2017, 64 patients had undergone repair of 73 PAAs at our tertiary care center. Of the 69 patients (73 PAAs), 29 (33 PAAs) had undergone OR and 35 (40 PAAs) had undergone ER. When comparing the two cohorts, no statistically significant differences were found in the demographic characteristics such as age, gender, or number of runoff vessels. Significantly more patients in the ER group (n = 21; 53%) than in the OR group (n = 7; 21%) had had hyperlipidemia (P = .008) and a previous carotid intervention (6% vs 0%; P = .029). Overall, the presence of symptoms was similar between the two groups. However, the OR group had a significantly higher number of patients who had presented with acute ischemia (P = .01). The length of stay was significantly shorter for the ER cohort (mean, 1.8 days; range, 1-11 days) than for the OR group (mean, 5.4 days; range, 2-13 days; P < .0001). No significant difference was found in the primary or secondary patency rates between the two groups. In the ER group, good runoff (two or more vessels) was a positive predictor for primary patency at 1 year (odds ratio, 3.36; 95% confidence interval, 1.0-11.25). However, it was not in the OR group. Postoperative single and/or dual antiplatelet therapy did not affect primary patency in either cohort. CONCLUSIONS: The results of our study have demonstrated that ER of PAAs is a safe and durable option with patency rates comparable to those with OR and a decreased length of stay, with good runoff a positive predictor for primary patency in the ER cohort.


Subject(s)
Aneurysm/surgery , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Length of Stay , Popliteal Artery/surgery , Aged , Aged, 80 and over , Aneurysm/diagnostic imaging , Aneurysm/physiopathology , Blood Vessel Prosthesis , Blood Vessel Prosthesis Implantation/adverse effects , Blood Vessel Prosthesis Implantation/instrumentation , Endovascular Procedures/adverse effects , Endovascular Procedures/instrumentation , Female , Humans , Male , Middle Aged , Popliteal Artery/diagnostic imaging , Popliteal Artery/physiopathology , Postoperative Complications/etiology , Retrospective Studies , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome , Vascular Patency
SELECTION OF CITATIONS
SEARCH DETAIL
...