Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 78(4): 1689-1708, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32734583

ABSTRACT

OSBP-homologous proteins (ORPs, Oshp) are lipid binding/transfer proteins. Several ORP/Oshp localize to membrane contacts between the endoplasmic reticulum (ER) and the plasma membrane, where they mediate lipid transfer or regulate lipid-modifying enzymes. A common way in which they target contacts is by binding to the ER proteins, VAP/Scs2p, while the second membrane is targeted by other interactions with lipids or proteins.We have studied the cross-talk of secretory SNARE proteins and their regulators with ORP/Oshp and VAPA/Scs2p at ER-plasma membrane contact sites in yeast and murine primary neurons. We show that Oshp-Scs2p interactions depend on intact secretory SNARE proteins, especially Sec9p. SNAP-25/Sec9p directly interact with ORP/Osh proteins and their disruption destabilized the ORP/Osh proteins, associated with dysfunction of VAPA/Scs2p. Deleting OSH1-3 in yeast or knocking down ORP2 in primary neurons reduced the oligomerization of VAPA/Scs2p and affected their multiple interactions with SNAREs. These observations reveal a novel cross-talk between the machineries of ER-plasma membrane contact sites and those driving exocytosis.


Subject(s)
Carrier Proteins/genetics , Endoplasmic Reticulum/genetics , Membrane Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Vesicular Transport Proteins/genetics , Animals , Biological Transport/genetics , Carrier Proteins/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Exocytosis/genetics , Humans , Lipid Metabolism/genetics , Mice , Qc-SNARE Proteins/genetics , Receptors, Steroid/genetics , SNARE Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sterols/metabolism , Synaptosomal-Associated Protein 25/genetics
2.
Atherosclerosis ; 249: 140-7, 2016 06.
Article in English | MEDLINE | ID: mdl-27105157

ABSTRACT

BACKGROUND AND AIMS: Among subjects with high-density-lipoprotein cholesterol (HDL-C) below the 1st percentile in the general population, we identified a heterozygous variant OSBPL1A p.C39X encoding a short truncated protein fragment that co-segregated with low plasma HDL-C. METHODS: We investigated the composition and function of HDL from the carriers and non-carriers and studied the properties of the mutant protein in cultured hepatocytes. RESULTS: Plasma HDL-C and apolipoprotein (apo) A-I were lower in carriers versus non-carriers, whereas the other analyzed plasma components or HDL parameters did not differ. Sera of the carriers displayed a reduced capacity to act as cholesterol efflux acceptors (p < 0.01), whereas the cholesterol acceptor capacity of their isolated HDL was normal. Fibroblasts from a p.C39X carrier showed reduced cholesterol efflux to lipid-free apoA-I but not to mature HDL particles, suggesting a specific defect in ABCA1-mediated efflux pathway. In hepatic cells, GFP-OSBPL1A partially co-localized in endosomes containing fluorescent apoA-I, suggesting that OSBPL1A may regulate the intracellular handling of apoA-I. The GFP-OSBPL1A-39X mutant protein remained in the cytosol and failed to interact with Rab7, which normally recruits OSBPL1A to late endosomes/lysosomes, suggesting that this mutation represents a loss-of-function. CONCLUSIONS: The present work represents the first characterization of a human OSBPL1A mutation. Our observations provide evidence that a familial loss-of-function mutation in OSBPL1A affects the first step of the reverse cholesterol transport process and associates with a low HDL-C phenotype. This suggests that rare mutations in OSBPL genes may contribute to dyslipidemias.


Subject(s)
Apolipoprotein A-I/metabolism , Cholesterol, HDL/blood , Receptors, Steroid/genetics , Adult , Aged , Animals , Carcinoma, Hepatocellular/metabolism , Cell Line , Cytosol/metabolism , Dyslipidemias/genetics , Endosomes/metabolism , Female , Fibroblasts/metabolism , Green Fluorescent Proteins/metabolism , Heterozygote , Humans , Lysosomes/metabolism , Male , Mice , Middle Aged , Mutation , Pedigree , Phenotype , RAW 264.7 Cells , Reproducibility of Results , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...