Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37519202

ABSTRACT

BACKGROUND: The distinct anatomy and physiology of the eye represent it as a specialized organ. The noumenal physiological barriers, whose prominent role is to prevent the entrance of extracellular substances, reduce the bioavailability of medicines taken locally. Nanocarriers offer many advantages, such as site-specific drug delivery, reduced dose-related side effects, more drug loading capacity, etc. Nanoparticles, nano micelles, Nanostructured Lipid Carriers (NLCs), Solid Lipid Nanoparticles (SLNs), liposomes, polymeric nanoparticles, microspheres, microemulsions, etc., have all undergone significant analysis to overcome numerous static and dynamic obstacles. OBJECTIVE: Among the several methods of delivering drugs, one of the most captivating and demanding is ocular drug delivery (ODD). The intent of developing formulations for an extended period can be partially achieved via thermoresponsive hydrogels. It is feasible to store fluids inside a cross-linked gel system for efficient long-term administration owing to hydrogels, which are hydrophilic polymeric networks with excellent three-dimensional structures and water or biological fluid absorption capacities. Hydrogels can be incorporated into nanocarriers to achieve site-specific action and prolonged release. METHOD: Related patents and research reports with various platforms like Science Direct, Springer, PubMed, Google Scholar, Shodhganga, and Patseer were used to gather the data, and a search methodology was availed. RESULT: The paper thoroughly summarizes the strategies for incorporating drugs with hydrogel into a nanocarrier to provide sustained release and prolonged therapeutic effects. According to the comprehensive review of literature and patents like (US2015374633A1), (US10980882B2), and (WO2011018800A2), nanocarrier-loaded thermoresponsive hydrogels show promising results. CONCLUSION: Due to their propensity to alter state in reaction to temperature changes, thermoresponsive hydrogels can improve medication bioavailability. Intervening nanocarriers loaded hydrogels directly on the targeted site displays local intervention and site-specificity. Thus, the use of nanocarriers in ocular drug delivery is encouraging.

SELECTION OF CITATIONS
SEARCH DETAIL
...