Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 89(6): 1419-1440, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38557709

ABSTRACT

Rivers respond directly to climate change, as well as incorporating the effects of climate-driven changes occurring within their watersheds. In this research, climate change's impact on the Atbara River, one of the main tributaries of the Nile River, was studied. Various statistical methods of analysis were applied to study the basic characteristics of the climatic parameters that affect the discharge of the Atbara River. The three hydrological gauging stations on the Atbara River, namely, the Upper Atbara and Setit reservoirs, Khashm el-Girba reservoir, and Atbara Kilo 3 station, were included in the study. The correlation between the meteorological parameters and the hydrology of the Atbara River and the prediction of the future hydrology of the Atbara River Basin was determined. Many hydrological models were developed and tested to predict the hydrology of the river. Finally, forecasting for river hydrology was built. No significant trend was found in the precipitation in the study area. The developed model simulates the observed data with a high coefficient of determination ranging from 0.7 to 0.91 for the three hydrological gauging stations studied. Results predicted a slight decrease in river discharge in future years.


Subject(s)
Rivers , Water Resources , Climate Change , Hydrology
2.
ScientificWorldJournal ; 2012: 346595, 2012.
Article in English | MEDLINE | ID: mdl-22666109

ABSTRACT

Sprouted corm sections of "South Dade" white cocoyam were potted and maintained in a greenhouse for 8 weeks. Shoot tips of 3-5 mm comprising the apical meristem with 4-6 leaf primordial, and approximately 0.5 mm of corm tissue at the base. These explants were treated to be used into the culture medium. A modified Gamborg's B5 mineral salts supplemented with 0.05 µM 1-naphthaleneacetic acid (NAA) were used throughout the study. Thidiazuron (TDZ) solution containing 0.01% dimethyl sulfoxide (DMSO) was used. Erlenmeyer flasks and test tubes were used for growing cultures. The effect of different media substrate, thidiazuron, and the interaction between TDZ and Benzylaminopurine (BAP) on cocoyam culture were tested. Results indicated that cocoyam can be successfully micropropagated in vitro through various procedures. All concentrations tested (5-20 µM BAP and 1-4 µM TDZ) produced more axillary shoots per shoot tip than the control without cytokinins. Greater proliferation rates were obtained through the use of 20 µM BAP and 2 µM TDZ, respectively, 12 weeks from initiation. Shoots produced with BAP were larger and more normal in appearance than those produced with TDZ, which were small, compressed, and stunted. The use of stationary liquid media is recommended for economic reasons.


Subject(s)
Xanthosoma/metabolism , Culture Media , Dimethyl Sulfoxide/chemistry , In Vitro Techniques , Naphthaleneacetic Acids/chemistry , Plant Shoots/growth & development
3.
J Exp Bot ; 60(13): 3665-76, 2009.
Article in English | MEDLINE | ID: mdl-19561047

ABSTRACT

Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux.


Subject(s)
Acer/physiology , Plant Leaves/physiology , Plant Transpiration , Acer/chemistry , Kinetics , Plant Leaves/chemistry , Seasons , Temperature , Water/metabolism
4.
Tree Physiol ; 29(7): 869-77, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19364703

ABSTRACT

Our understanding of leaf acclimation in relation to temperature of fully grown or juvenile tree crowns is mainly based on research involving spatially uncontrolled growth temperature. In this study, we test the hypothesis that leaf morphology and chemical elements are modulated by within-crown growth temperature differences. We ask whether within-species variation can influence acclimation to elevated temperatures. Within-crown temperature dependence of leaf morphology, carbon and nitrogen was examined in two genotypes of Acer rubrum L. (red maple) from different latitudes, where the mean annual temperature varies between 7.2 and 19.4 degrees C. Crown sections were grown in temperature-controlled chambers at three daytime growth temperatures (25, 33 and 38 degrees C). Leaf growth and resource acquisition were measured at regular intervals over long-term (50 days) controlled daytime growth temperatures. We found significant intraspecific variation in temperature dependence of leaf carbon and nitrogen accumulation between genotypes. Additionally, there was evidence that leaf morphology depended on inherited adaptation. Leaf dry matter and nitrogen content decreased as growth temperature was elevated above 25 degrees C in the genotype native to the cooler climate, whereas they remained fairly constant in response to temperature in the genotype native to the warmer climate. Specific leaf area (SLA) was correlated positively to leaf nitrogen content in both genotypes. The SLA and the relative leaf dry matter content (LM), on the other hand, were correlated negatively to leaf thickness. However, intraspecific variation in SLA and LM versus leaf thickness was highly significant. Intraspecific differences in leaf temperature response between climatically divergent genotypes yielded important implications for convergent evolution of leaf adaptation. Comparison of our results with those of previous studies showed that leaf carbon allocation along a vertical temperature gradient was modulated by growth temperature in the genotype native to the cooler climate. This indicates that within-crown temperature-induced variations in leaf morphology and chemical content should be accounted for in forest ecosystem models.


Subject(s)
Acclimatization , Acer/physiology , Plant Leaves/physiology , Temperature , Trees/physiology , Carbon/metabolism , Genotype , Light , Nitrogen/metabolism , Water/metabolism , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...