Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(43): 29531-29547, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37905569

ABSTRACT

The nature of the newly proposed two-positron bond in (PsH)2, which is composed of two protons, four electrons and two positrons, is considered in this contribution. The study is done at the multi-component-Hartree-Fock (MC-HF) and the Diffusion Monte Carlo (DMC) levels of theory by comparing ab initio data, analyzing the spatial structure of the DMC wavefunction, and applying the multi-component quantum theory of atoms in molecules and the two-component interacting quantum atoms energy partitioning schemes to the MC-HF wavefunction. The analysis demonstrates that (PsH)2 to a good approximation may be conceived of as two slightly perturbed PsH atoms, bonded through a two-positron bond. In contrast to the usual two-electron bonds, the positron exchange phenomenon is quite marginal in the considered two-positron bond. The dominant stabilizing mechanism of bonding is a novel type of classical electrostatic interaction between the positrons, which are mainly localized between nuclei, and the surrounding electrons. To emphasize its uniqueness, this mechanism of bonding is proposed to be called gluonic which has also been previously identified as the main driving mechanism behind formation of the one-positron bond in [H-,e+,H-]. We conclude that the studied two-positron bond should not be classified as a covalent bond and it must be seen as a brand-new type of bond, foreign to the electronic bonding modes discovered so far in the purely electronic systems.

2.
Phys Chem Chem Phys ; 25(7): 5718-5730, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36744327

ABSTRACT

The proton between the two oxygen atoms of the malonaldehyde molecule experiences an effective double-well potential in which the proton's wavefunction is delocalized between the two wells. Herein we employ a state-of-the-art multi-component quantum theory of atoms in molecules partitioning scheme to obtain the molecular structure, i.e. atoms in molecules and bonding network, from the superposed ab initio wavefunctions of malonaldehyde. In contrast to the familiar clamped-proton portrayal of malonaldehyde, in which the proton forms a hydrogen basin, for the superposed states the hydrogen basin disappears and two novel hybrid oxygen-hydrogen basins appear instead, with an even distribution of the proton population between the two basins. The interaction between the hybrid basins is stabilizing thanks to an unprecedented mechanism. This involves the stabilizing classical Coulomb interaction of the one-proton density in one of the basins with one-electron density in the other basin. This stabilizing mechanism yields a bond foreign to the known bonding modes in chemistry.

3.
J Chem Phys ; 156(4): 044104, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35105058

ABSTRACT

It is well-known experimentally that the positively charged muon and the muonium atom may bind to molecules and solids, and through muon's magnetic interaction with unpaired electrons, valuable information on the local environment surrounding the muon is deduced. Theoretical understanding of the structure and properties of resulting muonic species requires accurate and efficient quantum mechanical computational methodologies. In this paper, the two-component density functional theory (TC-DFT), as a first principles method, which treats electrons and the positive muon on an equal footing as quantum particles, is introduced and implemented computationally. The main ingredient of this theory, apart from the electronic exchange-correlation functional, is the electron-positive muon correlation functional that is foreign to the purely electronic DFT. A Wigner-type local electron-positive muon correlation functional, termed eµc-1, is proposed in this paper and its capability is demonstrated through its computational application to a benchmark set of muonic organic molecules. The TC-DFT equations containing eµc-1 are not only capable of predicting the muon's binding site correctly, but they also reproduce muon's zero-point vibrational energies and the muonic densities much more accurately than the TC-DFT equations lacking eµc-1. Thus, this study sets the stage for developing accurate electron-positive muon functionals, which can be used within the context of the TC-DFT to elucidate the intricate interaction of the positive muon with complex molecular systems.

4.
J Comput Chem ; 40(26): 2248-2283, 2019 10 05.
Article in English | MEDLINE | ID: mdl-31251411

ABSTRACT

The paper collects the answers of the authors to the following questions: Is the lack of precision in the definition of many chemical concepts one of the reasons for the coexistence of many partition schemes? Does the adoption of a given partition scheme imply a set of more precise definitions of the underlying chemical concepts? How can one use the results of a partition scheme to improve the clarity of definitions of concepts? Are partition schemes subject to scientific Darwinism? If so, what is the influence of a community's sociological pressure in the "natural selection" process? To what extent does/can/should investigated systems influence the choice of a particular partition scheme? Do we need more focused chemical validation of Energy Decomposition Analysis (EDA) methodology and descriptors/terms in general? Is there any interest in developing common benchmarks and test sets for cross-validation of methods? Is it possible to contemplate a unified partition scheme (let us call it the "standard model" of partitioning), that is proper for all applications in chemistry, in the foreseeable future or even in principle? In the end, science is about experiments and the real world. Can one, therefore, use any experiment or experimental data be used to favor one partition scheme over another? © 2019 Wiley Periodicals, Inc.


Subject(s)
Quantum Theory , Thermodynamics , Humans
5.
Chemphyschem ; 20(6): 831-837, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30734993

ABSTRACT

Recently it has been proposed that the positron, the anti-particle analog of the electron, is capable of forming an anti-matter bond in a composite system consists of two hydride anions and a positron [Angew. Chem. Int. Ed. 57, 8859-8864 (2018)]. In order to dig into the nature of this novel bond the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) is applied to this positronic system. The topological analysis reveals that this species is composed of two atoms in molecules, each containing a proton and half of the electronic and the positronic populations. Further analysis elucidates that the electron exchange phenomenon is virtually non-existent between the two atoms and no electronic covalent bond is conceivable in between. On the other hand, it is demonstrated that the positron density enclosed in each atom is capable of stabilizing interactions with the electron density of the neighboring atom. This electrostatic interaction suffices to make the whole system bonded against all dissociation channels. Thus, the positron indeed acts like an anti-matter glue between the two atoms.

6.
Phys Chem Chem Phys ; 20(24): 16749-16760, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29881845

ABSTRACT

Recently we have proposed an effective Hartree-Fock (EHF) theory for the electrons of the muonic molecules that is formally equivalent to the HF theory within the context of the nuclear-electronic orbital theory [Phys. Chem. Chem. Phys., 2018, 20, 4466]. In the present report we extend the muon-specific effective electronic structure theory beyond the EHF level by introducing the effective second order Møller-Plesset perturbation theory (EMP2) and the effective coupled-cluster theory at single and double excitation levels (ECCSD) as well as an improved version including perturbative triple excitations (ECCSD(T)). These theories incorporate electron-electron correlation into the effective paradigm and through their computational implementation, a diverse set of small muonic species is considered as a benchmark at these post-EHF levels. A comparative computational study on this set demonstrates that the muonic bond length is in general non-negligibly longer than corresponding hydrogenic analogs. Next, the developed post-EHF theories are applied for the muoniated N-heterocyclic carbene/silylene/germylene and the muoniated triazolium cation revealing the relative stability of the sticking sites of the muon in each species. The computational results, in line with previously reported experimental data demonstrate that the muon generally prefers to attach to the divalent atom with carbeneic nature. A detailed comparison of these muonic adducts with the corresponding hydrogenic adducts reveals subtle differences that have already been overlooked.

7.
Phys Chem Chem Phys ; 20(13): 8802-8811, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29542771

ABSTRACT

A set of effective electronic-only Kohn-Sham (EKS) equations are derived for the muonic molecules (containing a positively charged muon), which are completely equivalent to the coupled electronic-muonic Kohn-Sham equations derived previously within the framework of the nuclear-electronic orbital density functional theory (NEO-DFT). The EKS equations contain effective non-coulombic external potentials depending on parameters describing the muon's vibration, which are optimized during the solution of the EKS equations making the muon's KS orbital reproducible. It is demonstrated that the EKS equations are derivable from a certain class of effective electronic Hamiltonians through applying the usual Hohenberg-Kohn theorems revealing a "duality" between the NEO-DFT and the effective electronic-only DFT methodologies. The EKS equations are computationally applied to a small set of muoniated organic radicals and it is demonstrated that a mean effective potential may be derived for this class of muonic species while an electronic basis set is also designed for the muon. These computational ingredients are then applied to muoniated ferrocenyl radicals, which had been previously detected experimentally through adding a muonium atom to ferrocene. In line with previous computational studies, from the six possible species, the staggered conformer, where the muon is attached to the exo position of the cyclopentadienyl ring, is deduced to be the most stable ferrocenyl radical.

8.
Phys Chem Chem Phys ; 20(6): 4466-4477, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29372727

ABSTRACT

An effective set of Hartree-Fock (HF) equations are derived for electrons of muonic systems, i.e., molecules containing a positively charged muon, conceiving the muon as a quantum oscillator, which are completely equivalent to the usual two-component HF equations used to derive stationary states of the muonic molecules. In these effective equations, a non-Coulombic potential is added to the orthodox coulomb and exchange potential energy terms, which describes the interaction of the muon and the electrons effectively and is optimized during the self-consistent field cycles. While in the two-component HF equations a muon is treated as a quantum particle, in the effective HF equations it is absorbed into the effective potential and practically transformed into an effective potential field experienced by electrons. The explicit form of the effective potential depends on the nature of muon's vibrations and is derivable from the basis set used to expand the muonic spatial orbital. The resulting effective Hartree-Fock equations are implemented computationally and used successfully, as a proof of concept, in a series of muonic molecules containing all atoms from the second and third rows of the Periodic Table. To solve the algebraic version of the equations muon-specific Gaussian basis sets are designed for both muon and surrounding electrons and it is demonstrated that the optimized exponents are quite distinct from those derived for the hydrogen isotopes. The developed effective HF theory is quite general and in principle can be used for any muonic system while it is the starting point for a general effective electronic structure theory that incorporates various types of quantum correlations into the muonic systems beyond the HF equations.

9.
Chemistry ; 24(21): 5401-5405, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29283195

ABSTRACT

Equating (3,-1) critical points (CPs), derived from the topological analysis of the electron densities, to chemical bonds has triggered a lot of confusion in recent years. Part of this confusion stems from calling these CPs "bond" CPs (BCPs). While the origin of this terminology is traceable to the late seventies and beginning of eighties, when it sounded reasonable, new computational studies conducted on molecular electron densities cast serious doubt on the supposed universal equivalence between the chemical bonds and (3,-1) CPs. Herein, recent computational studies are briefly reviewed to demonstrate why (3,-1) CPs are not indicators of chemical bonds. It is discussed why this confusing terminology needs to be changed and reemphasized that (3,-1) CPs should be called "line" critical points (LCPs). The proposed terminology detaches the topological properties of molecular electron densities from any a priori chemical interpretation. Such detachment, if adopted by other authors, will hopefully prevent further misinterpretation of the data emerging from the quantum theory of atoms in molecules (QTAIM).

10.
J Chem Phys ; 146(15): 154106, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28433028

ABSTRACT

The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.

11.
Chemphyschem ; 17(23): 3875-3880, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-27778433

ABSTRACT

Recently, it has been demonstrated that the domain-averaged exchange-correlation energies, Vxc , are capable of tracing the covalent character of atom-atom interactions unequivocally and thus pave the way for detailed bonding analysis within the context of the quantum theory of atoms in molecules (QTAIM) [M. García-Revilla, E. Francisco, P. L. Popelier, A. Martín Pendás, ChemPhysChem 2013, 14, 1211-1218]. Herein, the concept of Vxc is extended within the context of the newly developed multicomponent QTAIM (MC-QTAIM). The extended version, Veexc , is capable of analyzing nonadiabatic wavefunctions and thus is sensitive to the mass of nuclei and can trace "locally" the subtle electronic variations induced by isotope substitution. To demonstrate this capability in practice, ab initio nonadiabatic wavefunctions for three isotopically substituted hydrogen cyanide molecules, in which the hydrogen nucleus was assumed to be a proton, deuterium, or tritium, were derived. The resulting wavefunctions were then used to compute Veexc and it emerged that for the hydrogen-carbon bond, the Veexc was distinct for each isotopic composition and varied in line with chemical expectations. Indeed, the introduction of Veexc paves the way for the investigation of vast numbers of structural and kinetic isotope effects within the context of the MC-QTAIM.

12.
Chemphyschem ; 17(20): 3260-3268, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27531565

ABSTRACT

The equivalence of the molecular graphs emerging from the comparative analysis of the optimized and the promolecule electron densities in two hundred and twenty five unsubstituted hydrocarbons was recently demonstrated [Keyvani et al. Chem. Eur. J. 2016, 22, 5003]. Thus, the molecular graph of an optimized molecular electron density is not shaped by the formation of the C-H and C-C bonds. In the present study, to trace the fingerprint of the C-H and C-C bonds in the electron densities of the same set of hydrocarbons, the amount of electron density and its Laplacian at the (3, -1) critical points associated with these bonds are derived from both optimized and promolecule densities, and compared in a newly proposed comparative analysis. The analysis not only conforms to the qualitative picture of the electron density build up between two atoms upon formation of a bond in between, but also quantifies the resulting accumulation of the electron density at the (3, -1) critical points. The comparative analysis also reveals a unified mode of density accumulation in the case of 2318 studied C-H bonds, but various modes of density accumulation are observed in the case of 1509 studied C-C bonds and they are classified into four groups. The four emerging groups do not always conform to the traditional classification based on the bond orders. Furthermore, four C-C bonds described as exotic bonds in previous studies, for example the inverted C-C bond in 1,1,1-propellane, are naturally distinguished from the analysis.

13.
Chemistry ; 22(14): 5003-9, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26914604

ABSTRACT

The "atoms in molecules" structures of 225 unsubstituted hydrocarbons are derived from both the optimized and the promolecule electron densities. A comparative analysis demonstrates that the molecular graphs derived from these two types of electron densities at the same geometry are equivalent for almost 90 % of the hydrocarbons containing the same number and types of critical points. For the remaining 10 % of molecules, it is demonstrated that by inducing small perturbations, through the variation of the used basis set or slight changes in the used geometry, the emerging molecular graphs from both densities are also equivalent. Interestingly, the (3, -1) critical point between two "non-bonded" hydrogen atoms, which triggered "H-H bonding" controversy is also observed in the promolecule densities of certain hydrocarbons. Evidently, the topology of the electron density is not dictated by chemical bonds or strong interactions and deformations induced by the interactions of atoms in molecules have a quite marginal role, virtually null, in shaping the general traits of the topology of molecular electron densities of the studied hydrocarbons, whereas the key factor is the underlying atomic densities.

14.
Chemistry ; 22(7): 2525-31, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26749489

ABSTRACT

Isotope substitutions are usually conceived to play a marginal role on the structure and bonding pattern of molecules. However, a recent study [Angew. Chem. Int. Ed. 2014, 53, 13706-13709; Angew. Chem. 2014, 126, 13925-13929] further demonstrates that upon replacing a proton with a positively charged muon, as the lightest radioisotope of hydrogen, radical changes in the nature of the structure and bonding of certain species may take place. The present report is a primary attempt to introduce another example of structural transformation on the basis of the malonaldehyde system. Accordingly, upon replacing the proton between the two oxygen atoms of malonaldehyde with the positively charged muon a serious structural transformation is observed. By using the ab initio nuclear-electronic orbital non-Born-Oppenheimer procedure, the nuclear configuration of the muon-substituted species is derived. The resulting nuclear configuration is much more similar to the transition state of the proton transfer in malonaldehyde rather than to the stable configuration of malonaldehyde. The comparison of the "atoms in molecules" (AIM) structure of the muon-substituted malonaldehyde and the AIM structure of the stable and the transition-state configurations of malonaldehyde also unequivocally demonstrates substantial similarities of the muon-substituted malonaldehyde to the transition state.

15.
Chemphyschem ; 17(1): 51-4, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26612061

ABSTRACT

A series of novel and possibly synthetically accessible rigid hydrocarbon structures is computationally introduced, maintaining ultrashort non-bonded hydrogen-hydrogen (H⋅⋅⋅H) contacts smaller than 1.2 Å. These are the shortest non-bonded H⋅⋅⋅H contacts reported to date, bypassing previous world records of both experimentally observed, 1.56 Å, and computationally derived, 1.4 Å, H⋅⋅⋅H contacts in any stable molecular structure.

16.
Phys Chem Chem Phys ; 17(10): 7023-37, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25684734

ABSTRACT

In a recent study it was suggested that the positively charged muon is capable of forming its own "atoms in molecules" (AIM) in the muonic hydrogen-like molecules, composed of two electrons, a muon and one of the hydrogen's isotopes, thus deserves to be placed in the Periodic Table [Phys. Chem. Chem. Phys., 2014, 16, 6602]. In the present report, the capacity of the positively charged muon in forming its own AIM is considered in a large set of molecules replacing muons with all protons in the hydrides of the second and third rows of the Periodic Table. Accordingly, in a comparative study the wavefunctions of both sets of hydrides and their muonic congeners are first derived beyond the Born-Oppenheimer (BO) paradigm, assuming protons and muons as quantum waves instead of clamped particles. Then, the non-BO wavefunctions are used to derive the AIM structures of both hydrides and muonic congeners within the context of the multi-component quantum theory of atoms in molecules. The results of the analysis demonstrate that muons are generally capable of forming their own atomic basins and the properties of these basins are not fundamentally different from those AIM containing protons. Particularly, the bonding modes in the muonic species seem to be qualitatively similar to their congener hydrides and no new bonding model is required to describe the bonding of muons to a diverse set of neighboring atoms. All in all, the positively charged muon is similar to a proton from the structural and bonding viewpoint and deserves to be placed in the same box of hydrogen in the Periodic Table. This conclusion is in line with a large body of studies on the chemical kinetics of the muonic molecules portraying the positively charged muon as a lighter isotope of hydrogen.

17.
Phys Chem Chem Phys ; 17(1): 245-55, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25388361

ABSTRACT

The Structural theory of chemistry introduces chemical/molecular structure as a combination of relative arrangement and bonding patterns of atoms in a molecule. Nowadays, the structure of atoms in molecules is derived from the topological analysis of the quantum theory of atoms in molecules (QTAIM). In this context, a molecular structure is varied by large geometrical variations and concomitant reorganization of electronic structure that usually take place in chemical reactions or under extreme hydrostatic pressure. In this report, a new mode of structural variation is introduced within the context of the newly proposed multi-component QTAIM (MC-QTAIM) that originates from the mass variation of nuclei. Accordingly, XCN and CNX series of species are introduced where X stands for a quantum particle with a unit of positive charge and a variable mass that is varied in discrete steps between the mass of a proton and a positron. Ab initio non-Born-Oppenheimer (non-BO) calculations are done on both series of species and the resulting non-BO wavefunctions are used for the MC-QTAIM analysis, revealing a triatomic structure for the proton mass and a diatomic structure for the positron mass. In both series of species, a critical mass between that of proton and positron mass is discovered where the transition from triatomic to diatomic structure takes place. This abrupt structural transformation has a topological nature resembling the usual phase transitions in thermodynamics. The discovered mass-induced structural transformation is a hidden aspect of the Structural theory which is revealed only beyond the BO paradigm, when nuclei are treated as quantum waves instead of clamped point charges.

18.
Chemistry ; 20(32): 10140-52, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-24990224

ABSTRACT

Currently, bonding analysis of molecules based on the Quantum Theory of Atoms in Molecules (QTAIM) is popular; however, "misinterpretations" of the QTAIM analysis are also very frequent. In this contribution the chemical relevance of the bond path as one of the key topological entities emerging from the QTAIM's topological analysis of the one-electron density is reconsidered. The role of nuclear vibrations on the topological analysis is investigated demonstrating that the bond paths are not indicators of chemical bonds. Also, it is argued that the detection of the bond paths is not necessary for the "interaction" to be present between two atoms in a molecule. The conceptual disentanglement of chemical bonds/interactions from the bonds paths, which are alternatively termed "line paths" in this contribution, dismisses many superficial inconsistencies. Such inconsistencies emerge from the presence/absence of the line paths in places of a molecule in which chemical intuition or alternative bonding analysis does not support the presence/absence of a chemical bond. Moreover, computational QTAIM studies have been performed on some "problematic" molecules, which were considered previously by other authors, and the role of nuclear vibrations on presence/absence of the line paths is studied demonstrating that a bonding pattern consistent with other theoretical schemes appears after a careful QTAIM analysis and a new "interpretation" of data is performed.


Subject(s)
Cobalt/chemistry , Methane/analogs & derivatives , Organosilicon Compounds/chemistry , Sulfhydryl Compounds/chemistry , Methane/chemistry , Models, Molecular , Quantum Theory , Thermodynamics
19.
Phys Chem Chem Phys ; 16(14): 6602-13, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24569859

ABSTRACT

This report is a primarily survey on the chemical nature of some exotic species containing the positively charged muon and the muonic helium, i.e., the negatively charged muon plus helium nucleus, as exotic isotopes of hydrogen, using the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) analysis, employing ab initio non-Born-Oppenhiemer wavefunctions. Accordingly, the "atoms in molecules" analysis performed on various asymmetric exotic isotopomers of the hydrogen molecule, recently detected experimentally [Science, 2011, 331, 448], demonstrates that both the exotic isotopes are capable of forming atoms in molecules and retaining the identity of hydrogen atoms. Various derived properties of atomic basins containing the muonic helium cast no doubt that apart from its short life time, it is a heavier isotope of hydrogen while the properties of basins containing the positively charged muon are more remote from those of the orthodox hydrogen basins, capable of appreciable donation of electrons as well as large charge polarization. However, with some tolerance, they may also be categorized as hydrogen basins though with a smaller electronegativity. All in all, the present study also clearly demonstrates that the MC-QTAIM analysis is an efficient approach to decipher the chemical nature of species containing exotic constituents, which are difficult to elucidate by experimental and/or alternative theoretical schemes.


Subject(s)
Helium/chemistry , Hydrogen/chemistry , Quantum Theory , Deuterium/chemistry , Models, Chemical , Tritium/chemistry
20.
J Phys Chem A ; 115(45): 12708-14, 2011 Nov 17.
Article in English | MEDLINE | ID: mdl-21721559

ABSTRACT

The electron density versus NICS(zz) (the out-of-plane component of nucleus-independent chemical shifts (NICS)) scan for assessing magnetic aromaticity among similar molecules with different ring sizes is improved by scanning the Laplacian of electron density versus NICS(zz) to include molecules containing different types of atoms. It is demonstrated that the new approach not only reproduces the results of the previous method but also surpasses that in the case of species with different atom types. The relative positions of curves in the plots of the Laplacian of electron density versus NICS(zz) correlate well with the ring current intensities of these molecules both near and far from the ring planes of the considered molecules. Accordingly, relative magnetic aromaticity of a number of planar hydrocarbons and a group of double aromatic metallic/semimetallic species are studied and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL