Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(8): 4266-4274, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38348770

ABSTRACT

Despite extensive research on the nucleation and growth of calcium oxalate (CaOx) crystals, there are still several challenges and unknowns that remain. In particular, the role of trace metal elements in the promotion or inhibition of CaOx crystals is not well understood. In the present study, in situ graphene liquid cell transmission electron microscopy (in situ GLC TEM) was used to observe real-time, nanoscale transformations of CaOx crystals in the presence of nickel ions (Ni2+). The results showed that Ni2+ form Ni-water complexes, acting as a shape-directing species, generating a unique morphology and altering growth kinetics. Transient adsorption of Ni-water complexes resulted in a metastable phase formation of calcium oxalate trihydrate. Atomistic molecular dynamics simulations confirmed that Ni2+ acts as a weak inhibitor which slows down the CaOx crystallization, elucidating that Ni2+ impacts small-sized CaOx clusters by bringing more water into the clusters. This work highlighted the intricacies behind the effect of Ni2+ on CaOx biomineralization that were made possible to discern using in situ GLC TEM.

2.
Nanoscale ; 15(15): 7006-7013, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36946122

ABSTRACT

The study of ice nucleation and growth at the nanoscale is of utmost importance in geological and atmospheric sciences. However, existing transmission electron microscopy (TEM) approaches have been unsuccessful in imaging ice formation directly. Herein, we demonstrate how radical scavengers - such as TiO2 - encased with water in graphene liquid cells (GLCs) facilitate the observation of ice nucleation phenomena at low temperatures. Atomic-resolution imaging reveals the nucleation and growth of cubic ice-phase crystals at close proximity to TiO2-water nanointerfaces at low temperatures. Interestingly, both heterogeneously and homogeneously nucleated ice crystals exhibited this cubic phase. Ice crystal nuclei were observed to be more stable at the TiO2-water nanointerface, as compared with crystals in the bulk liquid (homogeneous nucleation), suggesting the radical scavenging efficacy of TiO2 nanoparticles mitigating the electron beam by-products. The present work demonstrates that the use of radical scavengers in GLC TEM shows great promise towards unveiling the nanoscale pathways for ice nucleation and growth dynamic events.

3.
ACS Appl Bio Mater ; 6(4): 1515-1524, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36933270

ABSTRACT

While polyelemental alloys are shown to be promising for healthcare applications, their effectiveness in promoting bacterial growth remains unexplored. In the present work, we evaluated the interaction of polyelemental glycerolate particles (PGPs) with Escherichia coli (E. coli) bacteria. PGPs were synthesized using the solvothermal route, and nanoscale random distribution of metal cations in the glycerol matrix of PGPs was confirmed. We observed 7-fold growth of E. coli bacteria upon 4 h of interaction with quinary glycerolate (NiZnMnMgSr-Gly) particles in comparison to control E. coli bacteria. Nanoscale microscopic studies on bacteria interactions with PGPs showed the release of metal cations in the bacterium cytoplasm from PGPs. The electron microscopy imaging and chemical mapping indicated bacterial biofilm formation on PGPs without causing significant cell membrane damage. The data showed that the presence of glycerol in PGPs is effective in controlling the release of metal cations, thus preventing bacterial toxicity. The presence of multiple metal cations is expected to provide synergistic effects of nutrients needed for bacterial growth. The present work provides key microscopic insights of mechanisms by which PGPs enhance biofilm growth. This study opens the door for future applications of PGPs in areas where bacterial growth is essential including healthcare, clean energy, and the food industry.


Subject(s)
Escherichia coli , Glycerol , Glycerol/pharmacology , Cell Membrane , Alloys
4.
J Colloid Interface Sci ; 641: 643-652, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36963257

ABSTRACT

High-entropy materials have received notable attention concern on account of their unique structure, tunable properties, and unprecedented potential applications in many fields. In this work, for the first time a NiCoMnZnMg-containing high-entropy glycerolate (HE-Gly) particles has been synthesized using a scalable solvothermal method. The HE-Gly particles were used as a precursor in design of porous high-entropy oxide (HEO) microparticles. The morphological and structural characterizations demonstrate that the temperature of the annealing process, and the composition of the metal ions in the HE-Gly precursors play important roles in determining porosity, crystallinity, and phase separation in HEOs. In fact, HE-Gly exhibited a porous structure of spinel HEOs with secreted MgO phase after annealing process at 800 °C, while the annealing process at 400 °C led to a low-crystallinity spinel phase without phase segregation. Overall, this work describes HE-Gly as a new precursor for altering the composition, crystallinity, and porosity of HEOs. This strategy is scalable for potential high mass productions, paving a new path toward industrial application of high-entropy materials.

5.
ACS Nano ; 17(6): 5880-5893, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36921123

ABSTRACT

Multi-principal element nanoparticles are an emerging class of materials with potential applications in medicine and biology. However, it is not known how such nanoparticles interact with bacteria at nanoscale. In the present work, we evaluated the interaction of multi-principal elemental alloy (FeNiCu) nanoparticles with Escherichia coli (E. coli) bacteria using the in situ graphene liquid cell (GLC) scanning transmission electron microscopy (STEM) approach. The imaging revealed the details of bacteria wall damage in the vicinity of nanoparticles. The chemical mappings of S, P, O, N, C, and Cl elements confirmed the cytoplasmic leakage of the bacteria. Our results show that there is selective release of metal ions from the nanoparticles. The release of copper ions was much higher than that for nickel while the iron release was the lowest. In addition, the binding affinity of bacterial cell membrane protein functional groups with Cu, Ni, and Fe cations is found to be the driving force behind the selective metal cations' release from the multi-principal element nanoparticles. The protein functional groups driven dissolution of multielement nanoparticles was evaluated using the density functional theory (DFT) computational method, which confirmed that the energy required to remove Cu atoms from the nanoparticle surface was the least in comparison with those for Ni and Fe atoms. The DFT results support the experimental data, indicating that the energy to dissolve metal atoms exposed to oxidation and/or the to presence of oxygen atoms at the surface of the nanoparticle catalyzes metal removal from the multielement nanoparticle. The study shows the potential of compositional design of multi-principal element nanoparticles for the controlled release of metal ions to develop antibacterial strategies. In addition, GLC-STEM is a promising approach for understanding the nanoscale interaction of metallic nanoparticles with biological structures.


Subject(s)
Metal Nanoparticles , Nanoparticles , Escherichia coli/metabolism , Nanoparticles/chemistry , Metals , Metal Nanoparticles/chemistry , Copper/chemistry , Anti-Bacterial Agents/chemistry , Ions
6.
Nanoscale ; 15(10): 5011-5022, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36790028

ABSTRACT

Liposome is a model system for biotechnological and biomedical purposes spanning from targeted drug delivery to modern vaccine research. Yet, the growth mechanism of liposomes is largely unknown. In this work, the formation and evolution of phosphatidylcholine-based liposomes are studied in real-time by graphene liquid cell-transmission electron microscopy (GLC-TEM). We reveal important steps in the growth, fusion and denaturation of phosphatidylcholine (PC) liposomes. We show that initially complex lipid aggregates resembling micelles start to form. These aggregates randomly merge while capturing water and forming small proto-liposomes. The nanoscopic containers continue sucking water until their membrane becomes convex and free of redundant phospholipids, giving stabilized PC liposomes of different sizes. In the initial stage, proto-liposomes grow at a rate of 10-15 nm s-1, which is followed by their growth rate of 2-5 nm s-1, limited by the lipid availability in the solution. Molecular dynamics (MD) simulations are used to understand the structure of micellar clusters, their evolution, and merging. The liposomes are also found to fuse through lipid bilayers docking followed by the formation of a hemifusion diaphragm and fusion pore opening. The liposomes denaturation can be described by initial structural destabilization and deformation of the membrane followed by the leakage of the encapsulated liquid. This study offers new insights on the formation and growth of lipid-based molecular assemblies which is applicable to a wide range of amphiphilic molecules.


Subject(s)
Graphite , Liposomes , Liposomes/chemistry , Phospholipids/chemistry , Lipid Bilayers/chemistry , Microscopy, Electron, Transmission , Phosphatidylcholines/chemistry , Micelles , Water
7.
Science ; 379(6631): 499-505, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36730408

ABSTRACT

A lithium-air battery based on lithium oxide (Li2O) formation can theoretically deliver an energy density that is comparable to that of gasoline. Lithium oxide formation involves a four-electron reaction that is more difficult to achieve than the one- and two-electron reaction processes that result in lithium superoxide (LiO2) and lithium peroxide (Li2O2), respectively. By using a composite polymer electrolyte based on Li10GeP2S12 nanoparticles embedded in a modified polyethylene oxide polymer matrix, we found that Li2O is the main product in a room temperature solid-state lithium-air battery. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. The four-electron reaction is enabled by a mixed ion-electron-conducting discharge product and its interface with air.

8.
iScience ; 26(2): 106032, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36818279

ABSTRACT

Although it has been shown that configurational entropy can improve the structural stability in transition metal oxides (TMOs), little is known about the oxidation state of transition metals under random mixing of alloys. Such information is essential in understanding the chemical reactivity and properties of TMOs stabilized by configurational entropy. Herein, utilizing electron energy loss spectroscopy (EELS) technique in an aberration-corrected scanning transmission electron microscope (STEM), we systematically studied the oxidation state of binary (Mn, Fe)3O4, ternary (Mn, Fe, Ni)3O4, and quinary (Mn, Fe, Ni, Cu, Zn)3O4 solid solution polyelemental transition metal oxides (SSP-TMOs) nanoparticles. Our findings show that the random mixing of multiple elements in the form of solid solution phase not only promotes the entropy stabilization but also results in stable oxidation state in transition metals spanning from binary to quinary transition metal oxide nanoparticles.

9.
Nat Commun ; 13(1): 1375, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296655

ABSTRACT

Selective conversion of methane (CH4) into value-added chemicals represents a grand challenge for the efficient utilization of rising hydrocarbon sources. We report here dimeric copper centers supported on graphitic carbon nitride (denoted as Cu2@C3N4) as advanced catalysts for CH4 partial oxidation. The copper-dimer catalysts demonstrate high selectivity for partial oxidation of methane under both thermo- and photocatalytic reaction conditions, with hydrogen peroxide (H2O2) and oxygen (O2) being used as the oxidizer, respectively. In particular, the photocatalytic oxidation of CH4 with O2 achieves >10% conversion, and >98% selectivity toward methyl oxygenates and a mass-specific activity of 1399.3 mmol g Cu-1h-1. Mechanistic studies reveal that the high reactivity of Cu2@C3N4 can be ascribed to symphonic mechanisms among the bridging oxygen, the two copper sites and the semiconducting C3N4 substrate, which do not only facilitate the heterolytic scission of C-H bond, but also promotes H2O2 and O2 activation in thermo- and photocatalysis, respectively.

10.
Small ; 18(4): e2102666, 2022 01.
Article in English | MEDLINE | ID: mdl-34859587

ABSTRACT

Rapidly growing flexible and wearable electronics highly demand the development of flexible energy storage devices. Yet, these devices are susceptible to extreme, repeated mechanical deformations under working circumstances. Herein, the design and fabrication of a smart, flexible Li-ion battery with shape memory function, which has the ability to restore its shape against severe mechanical deformations, bending, twisting, rolling or elongation, is reported. The shape memory function is induced by the integration of a shape-adjustable solid polymer electrolyte. This Li-ion battery delivers a specific discharge capacity of ≈140 mAh g-1 at 0.2 C charge/discharge rate with ≈92% capacity retention after 100 cycles and ≈99.85% Coulombic efficiency, at 20 °C. Besides recovery from mechanical deformations, it is visually demonstrated that the shape of this smart battery can be programmed to adjust itself in response to an internal/external heat stimulus for task-specific and advanced applications. Considering the vast range of available shape memory polymers with tunable chemistry, physical, and mechanical characteristics, this study offers a promising approach for engineering smart batteries responsive to unfavorable internal or external stimulus, with potential to have a broad impact on other energy storage technologies in different sizes and shapes.


Subject(s)
Electric Power Supplies , Lithium , Electrolytes , Ions , Polymers
11.
ACS Nanosci Au ; 2(4): 297-306, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-37102063

ABSTRACT

The use of polymer electrolytes is of great interest for lithium-metal batteries (LMBs) due to their stability with lithium metal. However, the low thermal conductivity of polymer electrolytes poses a significant barrier to minimizing the formation of local hot spots during electrochemical reactions in lithium batteries that may lead to dendritic plating of Li or thermal runaway events. Electrolyte nanocomposites with proper distribution of thermally conductive nanomaterials offer an opportunity to address this shortcoming. Utilizing a custom-designed direct ink writing (DIW) process, we show that highly aligned boron nitride (BN) nanosheets can be embedded in poly(vinylidene fluoride-hexafluoropropylene) (PVdF) polymer composite electrolytes (CPE-BN), enabling novel architectural designs for safe Li-metal batteries. It is observed that the CPE-BN electrolytes possess a 400% increase in their in-plane thermal conductivity, which enables faster heat distribution in the CPE-BN electrolyte compared to the polymer electrolytes without BN nanosheets. The CPE-BN containing symmetric lithium cell exhibits stable Li plating/stripping for over 2000 cycles without short-circuiting due to the suppression of dendritic lithium. The lithium-ion half-cells made with the CPE-BN show stable cycling performance at 1C charge-discharge rate for 250 cycles with 90% capacity retention. This reported DIW-printed PVdF composite polymer electrolyte could be used as a model for developing new architectures for other electrolytes or electrodes, thus enabling new chemistry and improved performances in energy-storage devices.

12.
Adv Mater ; 34(9): e2106436, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34875115

ABSTRACT

Multi-elemental alloy (MEA) nanoparticles have recently received notable attention owing to their high activity and superior phase stability. Previous syntheses of MEA nanoparticles mainly used carbon as the support, owing to its high surface area, good electrical conductivity, and tunable defective sites. However, the interfacial stability issue, such as nanoparticle agglomeration, remains outstanding due to poor interfacial binding between MEA and carbon. Such a problem often causes performance decay when MEA nanoparticles are used as catalysts, hindering their practical applications. Herein, an interface engineering strategy is developed to synthesize MEA-oxide-carbon hierarchical catalysts, where the oxide on carbon helps disperse and stabilize the MEA nanoparticles toward superior thermal and electrochemical stability. Using several MEA compositions (PdRuRh, PtPdIrRuRh, and PdRuRhFeCoNi) and oxides (TiO2 and Cr2 O3 ) as model systems, it is shown that adding the oxide renders superior interfacial stability and therefore excellent catalytic performance. Excellent thermal stability is demonstrated under transmission electron microscopy with in situ heating up to 1023 K, as well as via long-term cycling (>370 hours) of a Li-O2 battery as a harsh electrochemical condition to challenge the catalyst stability. This work offers a new route toward constructing efficient and stable catalysts for various applications.

13.
Angew Chem Int Ed Engl ; 61(2): e202113420, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34699672

ABSTRACT

Tunnel-structured MnO2 represents open-framed electrode materials for reversible energy storage. Its wide application is limited by its poor cycling stability, whose structural origin is unclear. We tracked the structure evolution of ß-MnO2 upon Li+ ion insertion/extraction by combining advanced in situ diagnostic tools at both electrode level (synchrotron X-ray scattering) and single-particle level (transmission electron microscopy). The instability is found to originate from a partially reversible phase transition between ß-MnO2 and orthorhombic LiMnO2 upon lithiation, causing cycling capacity decay. Moreover, the MnO2 /LiMnO2 interface exhibits multiple arrow-headed disordered regions, which severely chop into the host and undermine its structural integrity. Our findings could account for the cycling instability of tunnel-structured materials, based on which future strategies should focus on tuning the charge transport kinetics toward performance enhancement.

14.
Chem Mater ; 34(24): 10801-10810, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36590705

ABSTRACT

Magnetic iron oxide nanoparticles have multiple biomedical applications in AC-field hyperthermia and magnetic resonance imaging (MRI) contrast enhancement. Here, two cubic particle suspensions are analyzed in detail, one suspension displayed strong magnetic heating and MRI contrast efficacies, while the other responded weakly. This is despite them having almost identical size, morphology, and colloidal dispersion. Aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy analysis confirmed that the spinel phase Fe3O4 was present in both samples and identified prominent crystal lattice defects for the weakly responding one. These are interpreted as frustrating the orientation of the moment within the cubic crystals. The relationship between crystal integrity and the moment magnitude and dynamics is elucidated for the case of fully dispersed single nanocubes, and its connection with the emergent hyperthermia and MRI contrast responses is established.

15.
Materials (Basel) ; 14(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34640291

ABSTRACT

Commercial poly methyl methacrylate (PMMA)-based cement is currently used in the field of orthopedics. However, it suffers from lack of bioactivity, mechanical weakness, and monomer toxicity. In this study, a PMMA-based cement nanocomposite reinforced with hydroxyapatite (HA) nanofibers and two-dimensional (2D) magnesium phosphate MgP nanosheets was synthesized and optimized in terms of mechanical property and cytocompatibility. The HA nanofibers and the MgP nanosheets were synthesized using a hydrothermal homogeneous precipitation method and tuning the crystallization of the sodium-magnesium-phosphate ternary system, respectively. Compressive strength and MTT assay tests were conducted to evaluate the mechanical property and the cytocompatibility of the PMMA-HA-MgP nanocomposites prepared at different ratios of HA and MgP. To optimize the developed nanocomposites, the standard response surface methodology (RSM) design known as the central composite design (CCD) was employed. Two regression models generated by CCD were analyzed and compared with the experimental results, and good agreement was observed. Statistical analysis revealed the significance of both factors, namely, the HA nanofibers and the MgP nanosheets, in improving the compressive strength and cell viability of the PMMA-MgP-HA nanocomposite. Finally, it was demonstrated that the HA nanofibers of 7.5% wt and the MgP nanosheets of 6.12% wt result in the PMMA-HA-MgP nanocomposite with the optimum compressive strength and cell viability.

16.
Nat Commun ; 12(1): 5067, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34417447

ABSTRACT

An overarching challenge of the electrochemical carbon dioxide reduction reaction (eCO2RR) is finding an earth-abundant, highly active catalyst that selectively produces hydrocarbons at relatively low overpotentials. Here, we report the eCO2RR performance of two-dimensional transition metal carbide class of materials. Our results indicate a maximum methane (CH4) current density of -421.63 mA/cm2 and a CH4 faradic efficiency of 82.7% ± 2% for di-tungsten carbide (W2C) nanoflakes in a hybrid electrolyte of 3 M potassium hydroxide and 2 M choline-chloride. Powered by a triple junction photovoltaic cell, we demonstrate a flow electrolyzer that uses humidified CO2 to produce CH4 in a 700-h process under one sun illumination with a CO2RR energy efficiency of about 62.3% and a solar-to-fuel efficiency of 20.7%. Density functional theory calculations reveal that dissociation of water, chemisorption of CO2 and cleavage of the C-O bond-the most energy consuming elementary steps in other catalysts such as copper-become nearly spontaneous at the W2C surface. This results in instantaneous formation of adsorbed CO-an important reaction intermediate-and an unlimited source of protons near the tungsten surface sites that are the main reasons for the observed superior activity, selectivity, and small potential.

17.
ACS Nano ; 15(9): 14928-14937, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34423972

ABSTRACT

High entropy alloy nanoparticles (HEA-NPs) are reported to have superior performance in catalysis, energy storage, and conversion due to the broad range of elements that can be incorporated in these materials, enabling tunable activity, excellent thermal and chemical stability, and a synergistic catalytic effect. However, scaling the manufacturing of HEA-NPs with uniform particle size and homogeneous elemental distribution efficiently is still a challenge due to the required critical synthetic conditions where high temperature is typically involved. In this work, we demonstrate an efficient and scalable microwave heating method using carbon-based materials as substrates to fabricate HEA-NPs with uniform particle size. Due to the abundant functional group defects that can absorb microwave efficiently, reduced graphene oxide is employed as a model substrate to produce an average temperature reaching as high as ∼1850 K within seconds. As a proof-of-concept, we utilize this rapid, high-temperature heating process to synthesize PtPdFeCoNi HEA-NPs, which exhibit an average particle size of ∼12 nm and uniform elemental mixing resulting from decomposition nearly at the same time and liquid metal solidification without diffusion. Various carbon-based materials can also be employed as substrates, including one-dimensional carbon nanofibers and three-dimensional carbonized wood, which can achieve temperatures of >1400 K. This facile and efficient microwave heating method is also compatible with the roll-to-roll process, providing a feasible route for scalable HEA-NPs manufacturing.

18.
Langmuir ; 37(30): 9059-9068, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34279100

ABSTRACT

The synthesis of high entropy oxide (HEO) nanoparticles (NPs) possesses many challenges in terms of process complexity and cost, scalability, tailoring nanoparticle morphology, and rapid synthesis. Herein, we report the synthesis of novel single-phase solid solution (Mn, Fe, Ni, Cu, Zn)3(O)4 quinary HEO NPs produced by a flame spray pyrolysis route. The aberration-corrected scanning transmission electron microscopy (STEM) technique is utilized to investigate the spinel crystal structure of synthesized HEO NPs, and energy-dispersive X-ray spectroscopy analysis confirmed the high entropy configuration of five metal elements in their oxide form within a single HEO nanoparticle. Selected area electron diffraction, X-ray diffraction, and Raman spectroscopy analysis results are in accordance with STEM results, providing the key attributes of a spinel crystal structure of HEO NPs. X-ray photoelectron spectroscopy results provide the insightful understanding of chemical oxidation states of individual elements and their possible cation occupancy sites in the spinel-structured HEO NPs.

19.
Nano Lett ; 21(4): 1742-1748, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33570961

ABSTRACT

Understanding the behavior of high-entropy alloy (HEA) materials under hydrogen (H2) environment is of utmost importance for their promising applications in structural materials, catalysis, and energy-related reactions. Herein, the reduction behavior of oxidized FeCoNiCuPt HEA nanoparticles (NPs) in atmospheric pressure H2 environment was investigated by in situ gas-cell transmission electron microscopy (TEM). The reduction reaction front was maintained at the external surface of the oxide. During reduction, the oxide layer expanded and transformed into porous structures where oxidized Cu was fully reduced to Cu NPs while Fe, Co, and Ni remained in the oxidized form. In situ chemical analysis showed that the expansion of the oxide layer resulted from the outward diffusion flux of all transition metals (Fe, Co, Ni, Cu). Revealing the H2 reduction behavior of HEA NPs facilitates the development of advanced multicomponent alloys for applications targeting H2 formation and storage, catalytic hydrogenation, and corrosion removal.

20.
Nat Commun ; 11(1): 6373, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33311508

ABSTRACT

Direct formation of ultra-small nanoparticles on carbon supports by rapid high temperature synthesis method offers new opportunities for scalable nanomanufacturing and the synthesis of stable multi-elemental nanoparticles. However, the underlying mechanisms affecting the dispersion and stability of nanoparticles on the supports during high temperature processing remain enigmatic. In this work, we report the observation of metallic nanoparticles formation and stabilization on carbon supports through in situ Joule heating method. We find that the formation of metallic nanoparticles is associated with the simultaneous phase transition of amorphous carbon to a highly defective turbostratic graphite (T-graphite). Molecular dynamic (MD) simulations suggest that the defective T-graphite provide numerous nucleation sites for the nanoparticles to form. Furthermore, the nanoparticles partially intercalate and take root on edge planes, leading to high binding energy on support. This interaction between nanoparticles and T-graphite substrate strengthens the anchoring and provides excellent thermal stability to the nanoparticles. These findings provide mechanistic understanding of rapid high temperature synthesis of metal nanoparticles on carbon supports and the origin of their stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...