Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(11): 8383-8391, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38437520

ABSTRACT

Two-dimensional van der Waals (vdW) heterostructures are an attractive platform for studying exchange bias due to their defect-free and atomically flat interfaces. Chromium thiophosphate (CrPS4), an antiferromagnetic material, possesses uncompensated magnetic spins in a single layer, rendering it a promising candidate for exploring exchange bias phenomena. Recent findings have highlighted that naturally oxidized vdW ferromagnetic Fe3GeTe2 exhibits exchange bias, attributed to the antiferromagnetic coupling of its ultrathin surface oxide layer (O-FGT) with the underlying unoxidized Fe3GeTe2. Anomalous Hall measurements are employed to scrutinize the exchange bias within the CrPS4/(O-FGT)/Fe3GeTe2 heterostructure. This analysis takes into account the contributions from both the perfectly uncompensated interfacial CrPS4 layer and the interfacial oxide layer. Intriguingly, a distinct and nonmonotonic exchange bias trend is observed as a function of temperature below 140 K. The occurrence of exchange bias induced by a "preset field" implies that the prevailing phase in the polycrystalline surface oxide is ferrimagnetic Fe3O4. Moreover, the exchange bias induced by the ferrimagnetic Fe3O4 is significantly modulated by the presence of the van der Waals antiferromagnetic CrPS4 layer, forming a heterostructure, along with additional iron oxide phases within the oxide layer. These findings underscore the intricate and complex nature of exchange bias in van der Waals heterostructures, highlighting their potential for tailored manipulation and control.

2.
Nat Commun ; 14(1): 5424, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37696785

ABSTRACT

Magnetic skyrmions, topologically-stabilized spin textures that emerge in magnetic systems, have garnered considerable interest due to a variety of electromagnetic responses that are governed by the topology. The topology that creates a microscopic gyrotropic force also causes detrimental effects, such as the skyrmion Hall effect, which is a well-studied phenomenon highlighting the influence of topology on the deterministic dynamics and drift motion. Furthermore, the gyrotropic force is anticipated to have a substantial impact on stochastic diffusive motion; however, the predicted repercussions have yet to be demonstrated, even qualitatively. Here we demonstrate enhanced thermally-activated diffusive motion of skyrmions in a specifically designed synthetic antiferromagnet. Suppressing the effective gyrotropic force by tuning the angular momentum compensation leads to a more than 10 times enhanced diffusion coefficient compared to that of ferromagnetic skyrmions. Consequently, our findings not only demonstrate the gyro-force dependence of the diffusion coefficient but also enable ultimately energy-efficient unconventional stochastic computing.

3.
Phys Rev Lett ; 125(26): 267202, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33449718

ABSTRACT

We report gapless quantum spin liquid behavior in the layered triangular Sr_{3}CuSb_{2}O_{9} system. X-ray diffraction shows superlattice reflections associated with atomic site ordering into triangular Cu planes well separated by Sb planes. Muon spin relaxation measurements show that the S=1/2 moments at the magnetically active Cu sites remain dynamic down to 65 mK in spite of a large antiferromagnetic exchange scale evidenced by a large Curie-Weiss temperature θ_{CW}≃-143 K as extracted from the bulk susceptibility. Specific heat measurements also show no sign of long-range order down to 0.35 K. The magnetic specific heat (C_{m}) below 5 K reveals a C_{m}=γT+αT^{2} behavior. The significant T^{2} contribution to the magnetic specific heat invites a phenomenology in terms of the so-called Dirac spinon excitations with a linear dispersion. From the low-T specific heat data, we estimate the dominant exchange scale to be ∼36 K using a Dirac spin liquid ansatz which is not far from the values inferred from microscopic density functional theory calculations (∼45 K) as well as high-temperature susceptibility analysis (∼70 K). The linear specific heat coefficient is about 18 mJ/mol K^{2} which is somewhat larger than for typical Fermi liquids.

4.
Rev Sci Instrum ; 87(10): 105110, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27802723

ABSTRACT

A low-temperature and high magnetic field powder x-ray diffractometer (XRD) has been developed at UGC-DAE CSR (UGC: University Grant Commission, DAE: Department of Atomic Energy, and CSR: Consortium for scientific research), Indore, India. The setup has been developed around an 18 kW rotating anode x-ray source delivering Cu-Kα x-rays coming from a vertical line source. It works in a symmetric θ-2θ parallel beam geometry. It consists of a liquid helium cryostat with an 8 T split-pair Nb-Ti superconducting magnet comprising two x-ray windows each covering an angular range of 65°. This is mounted on a non-magnetic type heavy duty goniometer equipped with all necessary motions along with data collection accessories. The incident x-ray beam has been made parallel using a parabolic multilayer mirror. The scattered x-ray is detected using a NaI detector through a 0.1° acceptance solar collimator. To control the motions of the goniometer, a computer programme has been developed. The wide-angle scattering data can be collected in a range of 2°-115° of 2θ with a resolution of ∼0.1°. The whole setup is tightly shielded for the scattered x-rays using a lead hutch. The functioning of the goniometer and the artifacts arising possibly due to the effect of stray magnetic field on the goniometer motions, on the x-ray source, and on the detector have been characterized by collecting powder XRD data of a National Institute of Standards and Technology certified standard reference material LaB6 (SRM-660b) and Si powder in zero-field and in-field conditions. Occurrence of field induced structural-phase transitions has been demonstrated on various samples like Pr0.5Sr0.5MnO3, Nd0.49Sr0.51MnO3-δ and La0.175Pr0.45Ca0.375MnO3 by collecting data in zero field cool and field cool conditions.

5.
J Phys Condens Matter ; 24(22): 225405, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22592293

ABSTRACT

We report the occurrence of kinetic arrest of the first-order phase transition from R3c to Pbnm in supercooled La(x)MnO(3±Î´) (x = 1 and 0.9, i.e. δ > 0.125). Structural studies have been done, employing low temperature transmission electron microscopy (LT-TEM) and low temperature x-ray diffraction (LT-XRD) techniques. No phase transformation was observed even in La(x)MnO(3±Î´) aged for ~12 h at 98 K. The evidence of the occurrence of kinetic arrest was realized at low temperatures through in situ electron beam triggered nucleation and perpetual devitrification of the R3c phase into a Pbnm phase. It was clearly evidenced that the R3c structure of La(x)MnO(3±Î´), below its ferromagnetic transition temperature, is metastable and prone to be transformed to a Pbnm orthorhombic structure following initiation by an electron beam trigger. The electron beam transformed Pbnm phase was found to transform back to the R3c phase through a first-order phase transition occurring close to the ferromagnetic to paramagnetic transition (T(c)) during heating. The glass-like kinetics of the arrested R3c phase has been investigated through resistance relaxation measurements, showing a decreasing logarithmic rate of decay of the arrested R3c phase towards the stable Pbnm phase with decreasing temperature, down to 5 K. On the basis of the correlations observed in the resistance-versus-temperature, magnetization-versus-temperature, magnetization-versus-field, resistance relaxation and LT-XRD measurements, the occurrence of kinetic arrest has been attributed to the suppression of Jahn-Teller distortion by double exchange across the insulator-metal transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...