Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 133(19)2023 10 02.
Article in English | MEDLINE | ID: mdl-37561581

ABSTRACT

Clinical genome editing is emerging for rare disease treatment, but one of the major limitations is the targeting of CRISPR editors' delivery. We delivered base editors to the retinal pigmented epithelium (RPE) in the mouse eye using silica nanocapsules (SNCs) as a treatment for retinal degeneration. Leber congenital amaurosis type 16 (LCA16) is a rare pediatric blindness caused by point mutations in the KCNJ13 gene, a loss of function inwardly rectifying potassium channel (Kir7.1) in the RPE. SNCs carrying adenine base editor 8e (ABE8e) mRNA and sgRNA precisely and efficiently corrected the KCNJ13W53X/W53X mutation. Editing in both patient fibroblasts (47%) and human induced pluripotent stem cell-derived RPE (LCA16-iPSC-RPE) (17%) showed minimal off-target editing. We detected functional Kir7.1 channels in the edited LCA16-iPSC-RPE. In the LCA16 mouse model (Kcnj13W53X/+ΔR), RPE cells targeted SNC delivery of ABE8e mRNA preserved normal vision, measured by full-field electroretinogram (ERG). Moreover, multifocal ERG confirmed the topographic measure of electrical activity primarily originating from the edited retinal area at the injection site. Preserved retina structure after treatment was established by optical coherence tomography (OCT). This preclinical validation of targeted ion channel functional rescue, a challenge for pharmacological and genomic interventions, reinforced the effectiveness of nonviral genome-editing therapy for rare inherited disorders.


Subject(s)
Channelopathies , Induced Pluripotent Stem Cells , Mice , Animals , Humans , Child , Gene Editing , Channelopathies/genetics , RNA, Guide, CRISPR-Cas Systems , Retina , Retinal Pigment Epithelium , Mutation , RNA, Messenger
2.
Neurochem Int ; 163: 105471, 2023 02.
Article in English | MEDLINE | ID: mdl-36592700

ABSTRACT

The intricate system of connections between the eye and the brain implies that there are common pathways for the eye and brain that get activated following injury. Hypoxia-ischemia (HI) related encephalopathy is a consequence of brain injury caused by oxygen and blood flow deprivation that may result in visual disturbances and neurodevelopmental disorders in surviving neonates. We have previously shown that the tyrosine receptor kinase B (TrkB) agonist/modulator improves neuronal survival and long-term neuroprotection in a sexually differential way. In this study, we tested the hypotheses that; 1) TrkB agonist therapy improves the visual function in a sexually differential way; 2) Visual function detected by electroretinogram (ERG) correlates with severity of brain injury detected by magnetic resonance (MRI) imaging following neonatal HI in mice. To test our hypotheses, we used C57/BL6 mice at postnatal day (P) 9 and subjected them to either Vannucci's rodent model of neonatal HI or sham surgery. ERG was performed at P 30, 60, and 90. MRI was performed following the completion of the ERG. ERG in these mice showed that the a-wave is normal, but the b-wave amplitude is severely abnormal, reducing the b/a wave amplitude ratio. Inner retina function was found to be perturbed as we detected severely attenuated oscillatory potential after HI. No sex differences were detected in the injury and severity pattern to the retina as well as in response to 7,8-DHF therapy. Strong correlations were detected between the percent change in b/a ratio and percent hemispheric/hippocampal tissue loss obtained by MRI, suggesting that ERG is a valuable noninvasive tool that can predict the long-term severity of brain injury.


Subject(s)
Brain Injuries , Hypoxia-Ischemia, Brain , Animals , Mice , Hypoxia-Ischemia, Brain/metabolism , Animals, Newborn , Retina/metabolism , Hypoxia , Ischemia/pathology , Brain Injuries/pathology
3.
Am J Physiol Cell Physiol ; 323(1): C56-C68, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35584325

ABSTRACT

Inward-rectifier potassium channel 7.1 (Kir7.1) is present in the polarized epithelium, including the retinal pigmented epithelium. A single amino acid change at position 153 in the KCNJ13 gene, a substitution of threonine to isoleucine in the Kir7.1 protein, causes blindness. We hypothesized that the disease caused by this single amino acid substitution within the transmembrane protein domain could alter the translation, localization, or ion transport properties. We assessed the effects of amino acid side-chain length, arrangement, and polarity on channel structure and function. We showed that the T153I mutation yielded a full-length protein localized to the cell membrane. Whole cell patch-clamp recordings and chord conductance analyses revealed that the T153I mutant channel had negligible K+ conductance and failed to hyperpolarize the membrane potential. However, the mutant channel exhibited enhanced inward current when rubidium was used as a charge carrier, suggesting that an inner pore had formed and the channel was dysfunctional. Substituting with a polar, nonpolar, or short side-chain amino acid did not affect the localization of the protein. Still, it had an altered channel function due to differences in pore radius. Polar side chains (cysteine and serine) with inner pore radii comparable to wildtype exhibited normal inward K+ conductance. Short side chains (glycine and alanine) produced a channel with wider than expected inner pore size and lacked the biophysical characteristics of the wild-type channel. Leucine substitution produced results similar to the T153I mutant channel. This study provides direct electrophysiological evidence for the structure and function of the Kir7.1 channel's narrow inner pore in regulating conductance.


Subject(s)
Potassium Channels, Inwardly Rectifying , Amino Acids/metabolism , Cell Membrane/metabolism , Membrane Potentials/genetics , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism
4.
Sci Rep ; 12(1): 756, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35031662

ABSTRACT

Aging is a significant factor in the development of age-related diseases but how aging disrupts cellular homeostasis to cause age-related retinal disease is unknown. Here, we further our studies on transmembrane protein 135 (Tmem135), a gene involved in retinal aging, by examining the transcriptomic profiles of wild-type, heterozygous and homozygous Tmem135 mutant posterior eyecup samples through RNA sequencing (RNA-Seq). We found significant gene expression changes in both heterozygous and homozygous Tmem135 mutant mouse eyecups that correlate with visual function deficits. Further analysis revealed that expression of many genes involved in lipid metabolism are changed due to the Tmem135 mutation. Consistent with these changes, we found increased lipid accumulation in mutant Tmem135 eyecup samples. Since mutant Tmem135 mice have similar ocular pathologies as human age-related macular degeneration (AMD) eyes, we compared our homozygous Tmem135 mutant eyecup RNA-Seq dataset with transcriptomic datasets of human AMD donor eyes. We found similar changes in genes involved in lipid metabolism between the homozygous Tmem135 mutant eyecups and AMD donor eyes. Our study suggests that the Tmem135 mutation affects lipid metabolism as similarly observed in human AMD eyes, thus Tmem135 mutant mice can serve as a good model for the role of dysregulated lipid metabolism in AMD.


Subject(s)
Eye/metabolism , Lipid Metabolism/genetics , Macular Degeneration/etiology , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Mutation , Animals , Disease Models, Animal , Humans , Macular Degeneration/genetics , Mice, Mutant Strains
5.
Sci Rep ; 11(1): 12670, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135369

ABSTRACT

Ischemic stroke is a major cause of long-term disabilities, including vision loss. Neuronal and blood vessel maturation can affect the susceptibility of and outcome after ischemic stroke. Although we recently reported that exposure of neonatal mice to hypoxia-ischemia (HI) severely compromises the integrity of the retinal neurovasculature, it is not known whether juvenile mice are similarly impacted. Here we examined the effect of HI injury in juvenile mice on retinal structure and function, in particular the susceptibility of retinal neurons and blood vessels to HI damage. Our studies demonstrated that the retina suffered from functional and structural injuries, including reduced b-wave, thinning of the inner retinal layers, macroglial remodeling, and deterioration of the vasculature. The degeneration of the retinal vasculature associated with HI resulted in a significant decrease in the numbers of pericytes and endothelial cells as well as an increase in capillary loss. Taken together, these findings suggest a need for juveniles suffering from ischemic stroke to be monitored for changes in retinal functional and structural integrity. Thus, there is an emergent need for developing therapeutic approaches to prevent and reverse retinal neurovascular dysfunction with exposure to ischemic stroke.


Subject(s)
Ischemic Stroke/physiopathology , Retina/physiopathology , Animals , Capillaries/pathology , Disease Models, Animal , Endothelial Cells/pathology , Hypoxia/physiopathology , Ischemia/physiopathology , Mice , Pericytes/pathology , Retinal Neurons/pathology , Retinal Vessels/physiopathology
6.
J Control Release ; 336: 296-309, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34174352

ABSTRACT

The rapid development of gene therapy and genome editing techniques brings up an urgent need to develop safe and efficient nanoplatforms for nucleic acids and CRISPR genome editors. Herein we report a stimulus-responsive silica nanoparticle (SNP) capable of encapsulating biomacromolecules in their active forms with a high loading content and loading efficiency as well as a well-controlled nanoparticle size (~50 nm). A disulfide crosslinker was integrated into the silica network, endowing SNP with glutathione (GSH)-responsive cargo release capability when internalized by target cells. An imidazole-containing component was incorporated into the SNP to enhance the endosomal escape capability. The SNP can deliver various cargos, including nucleic acids (e.g., DNA and mRNA) and CRISPR genome editors (e.g., Cas9/sgRNA ribonucleoprotein (RNP), and RNP with donor DNA) with excellent efficiency and biocompatibility. The SNP surface can be PEGylated and functionalized with different targeting ligands. In vivo studies showed that subretinally injected SNP conjugated with all-trans-retinoic acid (ATRA) and intravenously injected SNP conjugated with GalNAc can effectively deliver mRNA and RNP to murine retinal pigment epithelium (RPE) cells and liver cells, respectively, leading to efficient genome editing. Overall, the SNP is a promising nanoplatform for various applications including gene therapy and genome editing.


Subject(s)
Nanoparticles , Silicon Dioxide , Animals , CRISPR-Cas Systems , Gene Editing , Glutathione , Mice , RNA, Messenger
7.
Front Cell Dev Biol ; 9: 810020, 2021.
Article in English | MEDLINE | ID: mdl-35096838

ABSTRACT

Purpose: We constructed and characterized knockout and conditional knockout mice for KCNJ13, encoding the inwardly rectifying K+ channel of the Kir superfamily Kir7.1, mutations in which cause both Snowflake Vitreoretinal Degeneration (SVD) and Retinitis pigmentosa (RP) to further elucidate the pathology of this disease and to develop a potential model system for gene therapy trials. Methods: A Kcnj13 knockout mouse line was constructed by inserting a gene trap cassette expressing beta-galactosidase flanked by FRT sites in intron 1 with LoxP sites flanking exon two and converted to a conditional knockout by FLP recombination followed by crossing with C57BL/6J mice having Cre driven by the VMD2 promoter. Lentiviral replacement of Kcnj13 was driven by the EF1a or VMD2 promoters. Results: Blue-Gal expression is evident in E12.5 brain ventricular choroid plexus, lens, neural retina layer, and anterior RPE. In the adult eye expression is seen in the ciliary body, RPE and choroid. Adult conditional Kcnj13 ko mice show loss of photoreceptors in the outer nuclear layer, inner nuclear layer thinning with loss of bipolar cells, and thinning and disruption of the outer plexiform layer, correlating with Cre expression in the overlying RPE which, although preserved, shows morphological disruption. Fundoscopy and OCT show signs of retinal degeneration consistent with the histology, and photopic and scotopic ERGs are decreased in amplitude or extinguished. Lentiviral based replacement of Kcnj13 resulted in increased ERG c- but not a- or b- wave amplitudes. Conclusion: Ocular KCNJ13 expression starts in the choroid, lens, ciliary body, and anterior retina, while later expression centers on the RPE with no/lower expression in the neuroretina. Although KCNJ13 expression is not required for survival of the RPE, it is necessary for RPE maintenance of the photoreceptors, and loss of the photoreceptor, outer plexiform, and outer nuclear layers occur in adult KCNJ13 cKO mice, concomitant with decreased amplitude and eventual extinguishing of the ERG and signs of retinitis pigmentosa on fundoscopy and OCT. Kcnj13 replacement resulting in recovery of the ERG c- but not a- and b-waves is consistent with the degree of photoreceptor degeneration seen on histology.

8.
Invest Ophthalmol Vis Sci ; 61(12): 16, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33064130

ABSTRACT

Purpose: Aging is a critical risk factor for the development of retinal diseases, but how aging perturbs ocular homeostasis and contributes to disease is unknown. We identified transmembrane protein 135 (Tmem135) as a gene important for regulating retinal aging and mitochondrial dynamics in mice. Overexpression of Tmem135 causes mitochondrial fragmentation and pathologies in the hearts of mice. In this study, we examine the eyes of mice overexpressing wild-type Tmem135 (Tmem135 TG) and compare their phenotype to Tmem135 mutant mice. Methods: Eyes were collected for histology, immunohistochemistry, electron microscopy, quantitative PCR, and Western blot analysis. Before tissue collection, electroretinography (ERG) was performed to assess visual function. Mouse retinal pigmented epithelium (RPE) cultures were established to visualize mitochondria. Results: Pathologies were observed only in the RPE of Tmem135 TG mice, including degeneration, migratory cells, vacuolization, dysmorphogenesis, cell enlargement, and basal laminar deposit formation despite similar augmented levels of Tmem135 in the eyecup (RPE/choroid/sclera) and neural retina. We observed reduced mitochondria number and size in the Tmem135 TG RPE. ERG amplitudes were decreased in 365-day-old mice overexpressing Tmem135 that correlated with reduced expression of RPE cell markers. In Tmem135 mutant mice, RPE cells are thicker, smaller, and denser than their littermate controls without any signs of degeneration. Conclusions: Overexpression and mutation of Tmem135 cause contrasting RPE abnormalities in mice that correlate with changes in mitochondrial shape and size (overfragmented in TG vs. overfused in mutant). We conclude proper regulation of mitochondrial homeostasis by TMEM135 is critical for RPE health.


Subject(s)
Gene Expression Regulation/physiology , Membrane Proteins/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Mutation/genetics , Retinal Degeneration/genetics , Retinal Pigment Epithelium/metabolism , Animals , Blotting, Western , Cell Count , Cells, Cultured , Disease Models, Animal , Electroretinography , Immunohistochemistry , Mice , Mice, Inbred C57BL , Microscopy, Electron , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/physiopathology , Phenotype , Real-Time Polymerase Chain Reaction , Retinal Degeneration/metabolism , Retinal Degeneration/physiopathology , Retinal Pigment Epithelium/pathology
9.
Am J Hum Genet ; 107(2): 278-292, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32707085

ABSTRACT

Dominantly inherited disorders are not typically considered to be therapeutic candidates for gene augmentation. Here, we utilized induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) to test the potential of gene augmentation to treat Best disease, a dominant macular dystrophy caused by over 200 missense mutations in BEST1. Gene augmentation in iPSC-RPE fully restored BEST1 calcium-activated chloride channel activity and improved rhodopsin degradation in an iPSC-RPE model of recessive bestrophinopathy as well as in two models of dominant Best disease caused by different mutations in regions encoding ion-binding domains. A third dominant Best disease iPSC-RPE model did not respond to gene augmentation, but showed normalization of BEST1 channel activity following CRISPR-Cas9 editing of the mutant allele. We then subjected all three dominant Best disease iPSC-RPE models to gene editing, which produced premature stop codons specifically within the mutant BEST1 alleles. Single-cell profiling demonstrated no adverse perturbation of retinal pigment epithelium (RPE) transcriptional programs in any model, although off-target analysis detected a silent genomic alteration in one model. These results suggest that gene augmentation is a viable first-line approach for some individuals with dominant Best disease and that non-responders are candidates for alternate approaches such as gene editing. However, testing gene editing strategies for on-target efficiency and off-target events using personalized iPSC-RPE model systems is warranted. In summary, personalized iPSC-RPE models can be used to select among a growing list of gene therapy options to maximize safety and efficacy while minimizing time and cost. Similar scenarios likely exist for other genotypically diverse channelopathies, expanding the therapeutic landscape for affected individuals.


Subject(s)
Induced Pluripotent Stem Cells/physiology , Macular Degeneration/genetics , Mutation/genetics , Alleles , Bestrophins/genetics , Calcium/metabolism , Cell Line , Channelopathies/genetics , Eye Proteins/genetics , Gene Editing/methods , Genetic Therapy/methods , Genotype , HEK293 Cells , Humans , Retinal Pigment Epithelium/physiology
10.
J Control Release ; 324: 194-203, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32380204

ABSTRACT

Efficient delivery of hydrophilic drugs, nucleic acids, proteins, and any combination thereof is essential for various biomedical applications. Herein, we report a straightforward, yet versatile approach to efficiently encapsulate and deliver various hydrophilic payloads using a pH-responsive silica-metal-organic framework hybrid nanoparticle (SMOF NP) consisting of both silica and zeolitic imidazole framework (ZIF). This unique SMOF NP offers a high loading content and efficiency, excellent stability, and robust intracellular delivery of a variety of payloads, including hydrophilic small molecule drugs (e.g., doxorubicin hydrochloride), nucleic acids (e.g., DNA and mRNA), and genome-editing machineries (e.g., Cas9-sgRNA ribonucleoprotein (RNP), and RNP together with donor DNA (e.g., RNP + ssODN)). The superior drug delivery/gene transfection/genome-editing efficiencies of the SMOF NP are attributed to its pH-controlled release and endosomal escape capabilities due to the proton sponge effect enabled by the imidazole moieties in the SMOF NPs. Moreover, the surface of the SMOF NP can be easily customized (e.g., PEGylation and ligand conjugation) via various functional groups incorporated into the silica component. RNP-loaded SMOF NPs induced efficient genome editing in vivo in murine retinal pigment epithelium (RPE) tissue via subretinal injection, providing a highly promising nanoplatform for the delivery of a wide range of hydrophilic payloads.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Nucleic Acids , Pharmaceutical Preparations , Animals , CRISPR-Cas Systems , Gene Editing , Hydrogen-Ion Concentration , Mice , Silicon Dioxide
11.
Exp Eye Res ; 188: 107798, 2019 11.
Article in English | MEDLINE | ID: mdl-31520600

ABSTRACT

Abnormal migration and proliferation of endothelial cells (EC) drive neovascular retinopathies. While anti-VEGF treatment slows progression, pathology is often supported by decrease in intraocular pigment epithelium-derived factor (PEDF), an endogenous inhibitor of angiogenesis. A surface helical 34-mer peptide of PEDF, comprising this activity, is efficacious in animal models of neovascular retina disease but remains impractically large for therapeutic use. We sought smaller fragments within this sequence that mitigate choroidal neovascularization (CNV). Expecting rapid intravitreal (IVT) clearance, we also developed a method to reversibly attach peptides to nano-carriers for extended delivery. Synthetic fragments of 34-mer yielded smaller anti-angiogenic peptides, and N-terminal capping with dicarboxylic acids did not diminish activity. Charge restoration via substitution of an internal aspartate by asparagine improved potency, achieving low nM apoptotic response in VEGF-activated EC. Two optimized peptides (PEDF 335, 8-mer and PEDF 336, 9-mer) were tested in a mouse model of laser-induced CNV. IVT injection of either peptide, 2-5 days before laser treatment, gave significant CNV decrease at day +14 post laser treatment. The 8-mer also decreased CNV, when administered as eye drops. Also examined was a nanoparticle-conjugate (NPC) prodrug of the 9-mer, having positive zeta potential, expected to display longer intraocular residence. This NPC showed extended efficacy, even when injected 14 days before laser treatment. Neither inflammatory cells nor other histopathologic abnormalities were seen in rabbit eyes harvested 14 days following IVT injection of PEDF 336 (>200 µg). No rabbit or mouse eye irritation was observed over 12-17 days of PEDF 335 eye drops (10 mM). Viability was unaffected in 3 retinal and 2 choroidal cell types by PEDF 335 up to 100 µM, PEDF 336 (100 µM) gave slight growth inhibition only in choroidal EC. A small anti-angiogenic PEDF epitope (G-Y-D-L-Y-R-V) was identified, variants (adipic-Sar-Y-N-L-Y-R-V) mitigate CNV, with clinical potential in treating neovascular retinopathy. Their shared active motif, Y - - - R, is found in laminin (Ln) peptide YIGSR, which binds Ln receptor 67LR, a known high-affinity ligand of PEDF 34-mer.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Choroidal Neovascularization/prevention & control , Eye Proteins/therapeutic use , Nerve Growth Factors/therapeutic use , Oligopeptides/therapeutic use , Serpins/therapeutic use , Administration, Ophthalmic , Angiogenesis Inhibitors/chemistry , Animals , Apoptosis , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Disease Models, Animal , Drug Carriers , Electroretinography , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Eye Proteins/chemistry , Mice , Mice, Inbred C57BL , Nerve Growth Factors/chemistry , Oligopeptides/chemistry , Ophthalmic Solutions , Prodrugs , Rabbits , Rats , Serpins/chemistry
12.
Nat Nanotechnol ; 14(10): 974-980, 2019 10.
Article in English | MEDLINE | ID: mdl-31501532

ABSTRACT

Delivery technologies for the CRISPR-Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing system often require viral vectors, which pose safety concerns for therapeutic genome editing1. Alternatively, cationic liposomal components or polymers can be used to encapsulate multiple CRISPR components into large particles (typically >100 nm diameter); however, such systems are limited by variability in the loading of the cargo. Here, we report the design of customizable synthetic nanoparticles for the delivery of Cas9 nuclease and a single-guide RNA (sgRNA) that enables the controlled stoichiometry of CRISPR components and limits the possible safety concerns in vivo. We describe the synthesis of a thin glutathione (GSH)-cleavable covalently crosslinked polymer coating, called a nanocapsule (NC), around a preassembled ribonucleoprotein (RNP) complex between a Cas9 nuclease and an sgRNA. The NC is synthesized by in situ polymerization, has a hydrodynamic diameter of 25 nm and can be customized via facile surface modification. NCs efficiently generate targeted gene edits in vitro without any apparent cytotoxicity. Furthermore, NCs produce robust gene editing in vivo in murine retinal pigment epithelium (RPE) tissue and skeletal muscle after local administration. This customizable NC nanoplatform efficiently delivers CRISPR RNP complexes for in vitro and in vivo somatic gene editing.


Subject(s)
CRISPR-Associated Protein 9/administration & dosage , CRISPR-Cas Systems , Gene Editing , Nanocapsules/chemistry , RNA, Guide, Kinetoplastida/administration & dosage , Animals , CRISPR-Associated Protein 9/genetics , Glutathione/chemistry , HEK293 Cells , Humans , Mice , Polymers/chemistry , RNA, Guide, Kinetoplastida/genetics
13.
Am J Hum Genet ; 104(2): 310-318, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30686507

ABSTRACT

Pathogenic variants of the KCNJ13 gene are known to cause Leber congenital amaurosis (LCA16), an inherited pediatric blindness. KCNJ13 encodes the Kir7.1 subunit that acts as a tetrameric, inwardly rectifying potassium ion channel in the retinal pigment epithelium (RPE) to maintain ionic homeostasis and allow photoreceptors to encode visual information. We sought to determine whether genetic approaches might be effective in treating blindness arising from pathogenic variants in KCNJ13. We derived human induced pluripotent stem cell (hiPSC)-RPE cells from an individual carrying a homozygous c.158G>A (p.Trp53∗) pathogenic variant of KCNJ13. We performed biochemical and electrophysiology assays to confirm Kir7.1 function. We tested both small-molecule readthrough drug and gene-therapy approaches for this "disease-in-a-dish" approach. We found that the LCA16 hiPSC-RPE cells had normal morphology but did not express a functional Kir7.1 channel and were unable to demonstrate normal physiology. After readthrough drug treatment, the LCA16 hiPSC cells were hyperpolarized by 30 mV, and the Kir7.1 current was restored. Similarly, we rescued Kir7.1 channel function after lentiviral gene delivery to the hiPSC-RPE cells. In both approaches, Kir7.1 was expressed normally, and there was restoration of membrane potential and the Kir7.1 current. Loss-of-function variants of Kir7.1 are one cause of LCA. Using either readthrough therapy or gene augmentation, we rescued Kir7.1 channel function in iPSC-RPE cells derived from an affected individual. This supports the development of precision-medicine approaches for the treatment of clinical LCA16.


Subject(s)
Blindness/congenital , Channelopathies/genetics , Genetic Therapy/methods , Induced Pluripotent Stem Cells/cytology , Leber Congenital Amaurosis/genetics , Models, Biological , Potassium Channels, Inwardly Rectifying/genetics , Retinal Pigment Epithelium/pathology , Base Sequence , Blindness/genetics , Blindness/pathology , Channelopathies/pathology , Child , Humans , Leber Congenital Amaurosis/pathology , Retinal Pigment Epithelium/metabolism
14.
Mol Neurodegener ; 12(1): 68, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28927431

ABSTRACT

BACKGROUND: Retinitis pigmentosa (RP) is the most common inherited retinal degenerative disease yet with no effective treatment available. The sigma-1 receptor (S1R), a ligand-regulated chaperone, emerges as a potential retina-protective therapeutic target. In particular, pharmacological activation of S1R was recently shown to rescue cones in the rd10 mouse, a rod Pde6b mutant that recapitulates the RP pathology of autonomous rod degeneration followed by secondary death of cones. The mechanisms underlying the S1R protection for cones are not understood in detail. METHODS: By rearing rd10/S1R-/- and rd10/S1R+/+ mice in dim light to decelerate rapid rod/cone degeneration, we were able to compare their retinal biochemistry, histology and functions throughout postnatal 3-6 weeks (3 W-6 W). RESULTS: The receptor-interacting protein kinases (RIP1/RIP3) and their interaction (proximity ligation) dramatically up-regulated after 5 W in rd10/S1R-/- (versus rd10/S1R+/+) retinas, indicative of intensified necroptosis activation, which was accompanied by exacerbated loss of cones. Greater rod loss in rd10/S1R-/- versus rd10/S1R+/+ retinas was evidenced by more cleaved Caspase3 (4 W) and lower rod electro-retinographic a-waves (4 W-6 W), concomitant with reduced LC3-II and CHOP (4 W-6 W), markers of autophagy and endoplasmic reticulum stress response, respectively. However, the opposite occurred at 3 W. CONCLUSION: This study reveals previously uncharacterized S1R-associated mechanisms during rd10 photoreceptor degeneration, including S1R's influences on necroptosis and autophagy as well as its biphasic role in rod degeneration upstream of cone death.


Subject(s)
Receptors, sigma/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/metabolism , Animals , Disease Models, Animal , Mice , Mice, Knockout , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Retinal Cone Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/pathology , Retinitis Pigmentosa/pathology , Sigma-1 Receptor
15.
Sci Rep ; 7(1): 10651, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878288

ABSTRACT

The KCNJ13 gene encodes the inwardly rectifying potassium channel, Kir7.1. Mutations in this gene cause childhood blindness, in which the a- and b-wave responses of electroretinogram (ERG) are abolished. The ERG a-wave is the light-induced hyperpolarization of retinal photoreceptors, and the b-wave is the depolarization of ON-bipolar cells. The Kir7.1 channel is localized to the apical aspects of retinal pigment epithelium (RPE) cells and contributes to a delayed c-wave response. We sought to understand why a defect in an RPE ion-channel result in abnormal electrophysiology at the level of the retinal neurons. We have established the expression of Kir7.1 channels in the mouse RPE. ERGs recorded after mice Kir7.1 suppression by shRNA, or by blocking with VU590, showed reduced a-, b- and c-wave amplitudes. In contrast, the Kir7.1 blocker had no effect on the ex-vivo isolated mouse retina ERG where the RPE is not attached to the isolated retina preparation. Finally, we confirmed the specificity of VU590 action by inhibition of native mouse RPE Kir7.1 current in patch-clamp experiment. We propose that mutant RPE Kir7.1 channels contribute directly to the abnormal ERG associated with blindness via alterations in sub-retinal space K+ homeostasis in the vicinity of the photoreceptor outer segment.


Subject(s)
Electroretinography , Ion Channel Gating , Potassium Channels, Inwardly Rectifying/metabolism , Retina/metabolism , Animals , CHO Cells , Cricetulus , Female , Fluorescent Antibody Technique , Gene Expression , Immunohistochemistry , Male , Mice , Models, Biological , Photoreceptor Cells, Vertebrate/metabolism , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/genetics , RNA, Small Interfering/genetics , Tomography, Optical Coherence
16.
J Neuroinflammation ; 14(1): 14, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28103888

ABSTRACT

BACKGROUND: The bromodomain and extraterminal domain (BET) family proteins (BET2, BET3, and BET4) "read" (bind) histone acetylation marks via two distinct bromodomains (Brom1 and Brom2) facilitating transcriptional activation. These epigenetic "readers" play crucial roles in pathogenic processes such as inflammation. The role of BETs in influencing the degenerative process in the retina is however unknown. METHODS: We employed the rd10 mouse model (Pde6b rd10 mutation) of retinitis pigmentosa (RP) to examine the involvement of BET proteins in retinal neurodegeneration. RESULTS: Inhibition of BET activity by intravitreal delivery of JQ1, a BET-specific inhibitor binding both Brom1 and Brom2, ameliorated photoreceptor degeneration and improved electroretinographic function. Rescue effects of JQ1 were related to the suppression of retinal microglial activation in vivo, as determined by decreased immunostaining of activation markers (IBA1, CD68, TSPO) and messenger RNA (mRNA) levels of inflammatory cytokines in microglia purified from rd10 retinas. JQ1 pre-treatment also suppressed microglial activation in vitro, decreasing microglial proliferation, migration, and mRNA expression of inflammatory cytokines (TNFα, MCP-1, IL-1ß, IL-6, and RANTES). Expression of BET2, but not BET3 and BET4, was significantly elevated during photoreceptor degeneration at postnatal day (PN)24 in retinas of rd10 mice relative to age-matched wild-type controls. siRNA knockdown of BET2 but not BET4, and the inhibitor of Brom2 (RVX208) but not of Brom1 (Olinone), decreased microglial activation. CONCLUSIONS: These findings indicate that BET inhibition rescues photoreceptor degeneration likely via the suppression of microglial activation and implicates BET interference as a potential therapeutic strategy for the treatment of degenerative retinal diseases.


Subject(s)
Disease Models, Animal , Epigenesis, Genetic/physiology , Nerve Tissue Proteins/deficiency , Photoreceptor Cells/metabolism , Receptors, Cell Surface/deficiency , Retinitis Pigmentosa/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Photoreceptor Cells/pathology , Receptors, Cell Surface/genetics , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology
17.
Hum Mutat ; 36(7): 720-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25921210

ABSTRACT

Mutations in the KCNJ13 gene that encodes the inwardly rectifying potassium channel Kir7.1 cause snowflake vitreoretinal degeneration (SVD) and leber congenital amaurosis (LCA). Kir7.1 controls the microenvironment between the photoreceptors and the retinal pigment epithelium (RPE) and also contributes to the function of other organs such as uterus and brain. Heterologous expressions of the mutant channel have suggested a dominant-negative loss of Kir7.1 function in SVD, but parallel studies in LCA16 have been lacking. Herein, we report the identification of a novel nonsense mutation in the second exon of the KCNJ13 gene that leads to a premature stop codon in association with LCA16. We have determined that the mutation results in a severe truncation of the Kir7.1 C-terminus, alters protein localization, and disrupts potassium currents. Coexpression of the mutant and wild-type channel has no negative influence on the wild-type channel function, consistent with the normal clinical phenotype of carrier individuals. By suppressing Kir7.1 function in mice, we were able to reproduce the severe LCA electroretinogram phenotype. Thus, we have extended the observation that Kir7.1 mutations are associated with vision disorders to include novel insights into the molecular mechanism of disease pathobiology in LCA16.


Subject(s)
Codon, Nonsense , Eye Diseases/genetics , Leber Congenital Amaurosis/genetics , Potassium Channels, Inwardly Rectifying/genetics , Animals , Child , Humans , Leber Congenital Amaurosis/metabolism , Male , Mice , Middle East , Phenotype , Potassium Channels, Inwardly Rectifying/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...