Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2404773, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829366

ABSTRACT

There is notable progress in the development of efficient oxygen reduction electrocatalysts, which are crucial components of fuel cells. However, these superior activities are limited by imbalanced mass transport and cannot be fully reflected in actual fuel cell applications. Herein, the design concepts and development tracks of platinum (Pt)-nanocarbon hybrid catalysts, aiming to enhance the performance of both cathodic electrocatalysts and fuel cells, are presented. This review commences with an introduction to Pt/C catalysts, highlighting the diverse architectures developed to date, with particular emphasis on heteroatom modification and microstructure construction of functionalized nanocarbons based on integrated design concepts. This discussion encompasses the structural evolution, property enhancement, and catalytic mechanisms of Pt/C-based catalysts, including rational preparation recipes, superior activity, strong stability, robust metal-support interactions, adsorption regulation, synergistic pathways, confinement strategies, ionomer optimization, mass transport permission, multidimensional construction, and reactor upgrading. Furthermore, this review explores the low-barrier or barrier-free mass exchange interfaces and channels achieved through the impressive multidimensional construction of Pt-nanocarbon integrated catalysts, with the goal of optimizing fuel cell efficiency. In conclusion, this review outlines the challenges associated with Pt-nanocarbon integrated catalysts and provides perspectives on the future development trends of fuel cells and beyond.

2.
Chem Sci ; 10(34): 7975-7981, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31853353

ABSTRACT

Highly selective conversion of carbon dioxide (CO2) into valuable hydrocarbons is promising yet challenging in developing effective electrocatalysts. Herein, CuII/adeninato/carboxylato metal-biomolecule frameworks (CuII/ade-MOFs) are employed for efficient CO2 electro-conversion towards hydrocarbon generation. The cathodized CuII/ade-MOF nanosheets demonstrate excellent catalytic performance for CO2 conversion into valuable hydrocarbons with a total hydrocarbon faradaic efficiency (FE) of over 73%. Ethylene (C2H4) is produced with a maximum FE of 45% and a current density of 8.5 mA cm-2 at -1.4 V vs. RHE, while methane (CH4) is produced with a FE of 50% and current density of ∼15 mA cm-2 at -1.6 V vs. RHE. These investigations reveal that the reconstruction of cathodized CuII/ade-MOFs and the formed Cu nanoparticles functionalized by nitrogen-containing ligands contribute to the excellent CO2 conversion performance. Furthermore, this work would provide valuable insights and opportunities for the rational design of Cu-based MOF catalysts for highly efficient conversion of CO2 towards hydrocarbon generation.

SELECTION OF CITATIONS
SEARCH DETAIL
...