Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Arch Pharm (Weinheim) ; : e2400011, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713912

ABSTRACT

Diabetes mellitus (DM) is a chronic disorder that affects nearly half a billion people around the world and causes millions of deaths annually. Treatment of diabetes or related complications represents an economic burden not only for developing countries but also for the developed ones. Hence, new efficient therapeutic and preventive strategies and screening tools are necessary. The current work aimed to assess the potential association of single nucleotide polymorphisms (SNPs) in ghrelin O-acyltransferase (GOAT) rs10096097, cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) rs6740584, and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) rs62521874 genes with type 2 DM susceptibility in Egyptians. A total of 96 patients with type 2 DM along with 72 healthy individuals participated in this study. Genotyping was executed via real-time polymerase chain reaction (PCR), and the serum protein levels of GOAT, CREB, and MafA were measured by enzyme-linked immunosorbent assay (ELISA). Genotyping revealed a significant association of GOAT rs10096097 and CREB1 rs6740584 SNPs with type 2 diabetes risk, with significantly higher GOAT rs10096097 G allele and CREB1 rs6740584 T allele frequencies in diabetic patients than in controls. However, insignificant association was identified between the MafA rs62521874 SNP and diabetes in the examined sample of the Egyptian residents. Serum GOAT, CREB1, and MafA protein levels did not vary significantly between diabetic and control individuals. Yet, significant variation in serum GOAT and CREB1 levels was detected between CREB1 rs6740584 genotypes within the diabetic group, with CT and TT genotype carriers showing higher levels than AA genotype patients. GOAT rs10096097 and CREB1 rs6740584, but not MafA rs62521874, SNPs are associated with type 2 diabetes risk in the studied Egyptians.

2.
J Biochem Mol Toxicol ; 38(4): e23673, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38481010

ABSTRACT

The intricate pathogenesis of the hepatitis B virus (HBV) and its progression to hepatocellular carcinoma (HCC) have not yet been fully elucidated. H19 is one of the earliest imprinted long noncoding RNAs (lncRNAs) associated with liver pathobiology. This study investigated the association of H19 single nucleotide polymorphisms (SNPs) rs2839698 C/T and rs217727 C/T with HBV and HBV-related HCC and their correlation with H19 expression level. A total of 230 subjects were enrolled in this study including 100 HBV-infected patients, 30 HBV-related HCC patients, and 100 apparently healthy controls. TaqMan genotyping human assays were utilized to assess allelic discrimination for H19 SNPs. H19 expression was assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Our findings showed that H19 rs2839698 was linked to a higher incidence of HBV infection and HBV-related HCC. Individuals who bear the CT genotype of rs2839698 were more susceptible to HBV infection (OR = 3.05; 95% CI 1.714-5.457; p < 0.001). Those harboring the TT genotype were more prone to develop HCC (OR = 2.625; 95% CI 1.037-6.64; p = 0.038). Our data revealed that rs2839698 could function as a promising predictor of HCC risk. Furthermore, H19 was significantly downregulated in HBV (p < 0.01) and HCC (p < 0.01) patients versus the control group. Significant upregulation of H19 in HCC patients with cirrhosis (p < 0.001) was detected. Altogether, this is considered the first prospective case-control study to address the implication of the genetic variations of H19 SNPs in HBV and HBV-related HCC in Egyptian patients.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/pathology , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Hepatitis B/complications , Hepatitis B/genetics , Hepatitis B virus , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics
3.
Neurobiol Dis ; 178: 106032, 2023 03.
Article in English | MEDLINE | ID: mdl-36754216

ABSTRACT

The runt-related transcription factor-1 (RUNX1) gene with its lncRNA RUNXOR are recently becoming a research focus in various diseases, specifically immune-related diseases as they are implicated in multiple pathways. Interestingly, their role in multiple sclerosis (MS) remains unstudied. The present study explored the role of RUNXOR/RUNX1 in the development and progression of MS and investigated their possible mechanism of action. We measured the serum expression levels of lncRNA RUNXOR, as well as RUNX1, microtubule associated protein 2 (MAP2), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) mRNAs in 30 healthy controls and 120 MS patients subdivided into 4 groups: 30 clinically isolated syndrome patients, 30 relapsing-remitting MS (RRMS) patients in relapse, 30 RRMS patients in remission and 30 secondary progressive MS patients. Additionally, we measured the serum protein levels of RUNX1, MAP2, NGF, BDNF and interleukin-10 (IL-10). All measured RNA expression levels were markedly downregulated and, consequently, the protein levels of RUNX1, MAP2, NGF, BDNF and IL-10 were significantly decreased in MS patients compared to healthy controls. Moreover, the levels of the measured parameters varied significantly within the MS groups. According to receiver-operating-characteristic (ROC) curve and logistic regression analyses, lncRNA RUNXOR, RUNX1 mRNA and its protein levels were predictors of disease progression, in addition to RUNX1 mRNA exhibiting a diagnostic potential. Altogether, this study suggests the implication of the RUNXOR-RUNX1 axis in MS development, progression, and increased MS-related disability, and highlights the potential utility of the studied parameters as promising diagnostic/prognostic biomarkers for MS.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , RNA, Long Noncoding , Humans , Multiple Sclerosis/diagnosis , Brain-Derived Neurotrophic Factor , Interleukin-10 , Prognosis , Nerve Growth Factor , Core Binding Factor Alpha 2 Subunit/genetics , Multiple Sclerosis, Relapsing-Remitting/diagnosis , RNA, Messenger
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166520, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35985446

ABSTRACT

Despite the efficacy of trastuzumab in treating HER2-positive breast cancer patients, a significant proportion of patients relapse after treatment. The role of C-X-C chemokine receptor type 4 (CXCR4) in trastuzumab resistance was studied only in cell lines and the underlying mechanisms remain largely unclear. This study investigated the role of CXCR4 in trastuzumab resistance in breast cancer patients and explored the possible underlying mechanisms. The study was performed retrospectively on tissue samples from 62 breast cancer patients including 42 who were treated with trastuzumab and chemotherapy and 20 who received chemotherapy alone in adjuvant setting. Expression levels of CXCR4 and its regulators hypoxia-inducible factor 1-alpha (HIF-1α), tristetraprolin (TTP), human antigen R (HuR), itchy E3 ubiquitin protein ligase (ITCH), miR-302a and miR-494 were determined and their associations with tumor recurrence and disease-free survival were analyzed. In trastuzumab-treated patients, high CXCR4 expression was associated with recurrence and was an independent predictor of progression risk after therapy. CXCR4 correlated positively with its transcriptional regulator, HIF-1α, and negatively with its post-translational regulator, ITCH. HIF-1α, HuR and ITCH were significantly associated with clinical outcome. In chemotherapy-treated patients, neither CXCR4 nor any of its regulators were associated with recurrence or predicted disease progression risk after chemotherapy. In conclusion, this study suggests a potential role for CXCR4 in recurrence after trastuzumab-based therapy in human breast cancer that could be mediated, at least in part, by hypoxia and/or decreased ubiquitination. These findings highlight the potential utility of CXCR4 as a promising target for enhancing trastuzumab therapeutic outcome.


Subject(s)
Breast Neoplasms , MicroRNAs , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Humans , Hypoxia-Inducible Factor 1 , MicroRNAs/genetics , MicroRNAs/therapeutic use , Receptors, CXCR4/genetics , Retrospective Studies , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Tristetraprolin/therapeutic use , Ubiquitin-Protein Ligases/genetics
5.
Biofactors ; 47(4): 645-657, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33836111

ABSTRACT

Diabetes is considered one of the most important health emergencies worldwide and Egypt has 8.2 million diabetic patients according to the International Diabetes Federation report in 2017. The objective of this study was to monitor the time-course variation in the metabolic profile of diabetic rats to detect urinary metabolic biomarkers using the metabolomics approach. Type 2 diabetes was induced in male Wistar albino rats using a single intraperitoneal injection of 40 mg/kg of streptozotocin following oral administration of 10% fructose in drinking water for 3 weeks. Then, urine was collected for 24 h from rats at three time points (0, 2, and 4 weeks after confirmation of diabetes), and were analyzed by nuclear magnetic resonance (H1 -NMR), followed by multivariate data analysis. The results from H1 -NMR pointed out that d-glucose, taurine, l-carnitine, l-fucose, 1,5-anhydrosorbitol, and d-galactose levels showed consistent significant variation (p < 0.05) between the positive (diabetic) and negative (normal) controls during the whole experimental period. Also, with the disease progression, myoinositol, and l-phenylalanine levels were significantly altered (p < 0.05) after 2 weeks and this alteration was maintained till the end of the 4-week experimental period in the positive control group. From the results of the present study, it could be concluded that we cannot depend only on glucose levels for prognostic purposes since there are other metabolic disturbances in diabetes which need to be tracked for better disease prognosis.


Subject(s)
Diabetes Mellitus, Experimental/urine , Glycosuria/urine , Metabolomics/methods , Animals , Biomarkers/urine , Carnitine/urine , Cluster Analysis , Deoxyglucose/urine , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Disease Progression , Fructose/administration & dosage , Fucose/urine , Galactose/urine , Glycosuria/chemically induced , Glycosuria/genetics , Glycosuria/pathology , Inositol/urine , Magnetic Resonance Spectroscopy , Male , Metabolome , Phenylalanine/urine , Rats , Rats, Wistar , Streptozocin/administration & dosage , Taurine/urine , Time Factors
6.
ACS Chem Neurosci ; 12(4): 689-703, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33543924

ABSTRACT

Dapagliflozin, a selective sodium-glucose co-transporter 2 (SGLT2) inhibitor, has emerged as a promising neuroprotective agent in murine models of epilepsy and obesity-induced cognitive impairment through its marked antioxidant/antiapoptotic features. However, the impact of dapagliflozin on the pathogenesis of Parkinson's disease (PD) is lacking. Hence, the present study aimed at exploring the potential neuroprotective effects of dapagliflozin against PD-associated neurodegenerative aberrations/motor dysfunction in rotenone-induced PD rat model. Rotenone (1.5 mg/kg) was subcutaneously administered every other day for 3 weeks. The expression of target signals was investigated using qPCR, Western blotting, ELISA, and immunohistochemistry. Dapagliflozin (1 (mg/kg)/day, by gavage for 3 weeks) attenuated PD motor dysfunction and improved motor coordination in the open-field and rotarod tests without triggering hypoglycemia. It also diminished the histopathologic alterations and α-synuclein expression and augmented tyrosine hydroxylase and dopamine levels. Dapagliflozin markedly alleviated neuronal oxidative stress via lowering lipid peroxides with consequent restoration of the disturbed DJ-1/Nrf2 pathway. Moreover, dapagliflozin counteracted ROS-dependent neuronal apoptosis and upregulated GDNF and its downstream PI3K/AKT/GSK-3ß (Ser9) pathway. Meanwhile, it suppressed neuroinflammation via curbing the activation of NF-κB pathway and TNF-α levels. Together, these pleiotropic neuroprotective effects highlight the promising role of dapagliflozin in the management of PD.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Benzhydryl Compounds , Glucosides , Glycogen Synthase Kinase 3 beta , Mice , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reactive Oxygen Species , Rotenone/toxicity
7.
ACS Chem Neurosci ; 11(20): 3386-3397, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32936609

ABSTRACT

Alzheimer's disease (AD) is a progressively debilitating neurodegenerative disorder that has no effective remedy, so far, with available therapeutic modalities being only symptomatic and of modest efficacy. Necroptosis is a form of controlled cell death with a recently emerging link to the pathogenesis of several neurodegenerative diseases. This study investigated the role of necroptosis in the pathogenesis of AD and evaluated the potential beneficial effect of the necroptosis inhibitor, necrosulfonamide (NSA), in a rat model of AD. AD was induced by oral administration of AlCl3 (17 mg/kg/day) for 6 consecutive weeks. Administration of NSA (1.65 mg/kg/day) intraperitoneally for 6 weeks significantly amended AlCl3-induced spatial learning and memory deficits, as demonstrated by enhanced rat performance in Morris water and Y-mazes. NSA alleviated the abnormally high hippocampal expression of tumor necrosis factor-alpha (TNF-α), ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), ß-amyloid, glycogen synthase kinase-3ß (GSK-3ß), phosphorylated tau protein, and acetylcholinesterase with concordant replenishment of acetylcholine. The amendments of AD perturbations achieved by NSA correlated with its inhibitory effect on the phosphorylation of the key necroptotic executioner, mixed lineage kinase domain-like protein (MLKL). Histopathological alterations supported the biochemical findings. In conclusion, NSA treatment represents a promising anti-Alzheimer's approach, mitigating AD neuropathologies via targeting MLKL-dependent necroptosis.


Subject(s)
Alzheimer Disease , Acrylamides , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases , Animals , Aspartic Acid Endopeptidases , Glycogen Synthase Kinase 3 beta , Necroptosis , Rats , Sulfonamides
8.
Chem Biol Interact ; 328: 109144, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32653415

ABSTRACT

The debilitating nature of cognitive impairment in epilepsy and the potential of some traditional antiepileptics to further deteriorate cognitive function are areas of growing concern. Glucagon-like peptide-1 (GLP-1) deficiency has been linked to reduced seizure threshold as well as cognitive dysfunction. Here, we tested whether sitagliptin (SITA), by virtue of its neuroprotective properties, could alleviate both epilepsy and associated cognitive dysfunction in a rat model of kindling epilepsy. Chemical kindling was induced by subconvulsive doses of pentylenetetrazol (PTZ) (30 mg/kg; i.p). SITA (50 mg/kg; p.o) was administered 1 h before PTZ injections. SITA conceivably attenuated PTZ hippocampal histological insult, preserved neuronal integrity and amended neurotransmitter perturbations in rat hippocampi paralleled with enhanced hippocampal GLP-1 levels as well as the downstream cAMP content and protein kinase A (PKA) activity. Moreover, SITA improved cognitive functioning of rats in the Morris water maze which was coupled with hampered hippocampal p(Ser404)-tau and ß-amyloid proteins. SITA replenished p(Ser9)-glycogen synthase kinase-3ß (GSK-3ß). It also opposed the boosted matrix metalloproteinase-9 (MMP-9), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor-1 (IGF-1) levels associated with PTZ administration along with mitigation of both ß-secretase-1 (BACE1) immunoreactivity and receptor for advanced glycation end products (RAGE) protein level in rat hippocampi. In conclusion, SITA subdues epileptic and cognitive upshots of PTZ kindling in rats, which might correspond to the modulation of BACE1, amyloidogenic/RAGE axis as well as GSK-3ß/MMP-9/BDNF signaling cascade. SITA effects are probably mediated via boosting GLP-1 and subsequently enhancing GLP-1/GLP-1R signaling.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid/metabolism , Aspartic Acid Endopeptidases/metabolism , Cognition Disorders/chemically induced , Cognition Disorders/metabolism , Kindling, Neurologic/drug effects , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction , Sitagliptin Phosphate/pharmacology , Amyloid beta-Peptides/metabolism , Animals , Biomarkers/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cognition Disorders/pathology , Glucagon-Like Peptide 1/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Insulin-Like Growth Factor I/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Neural Inhibition/drug effects , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neurotransmitter Agents/metabolism , Pentylenetetrazole , Rats, Wistar , Seizures/chemically induced , Seizures/metabolism , Seizures/pathology , Signal Transduction/drug effects , Spatial Memory/drug effects , tau Proteins/metabolism
9.
Article in English | MEDLINE | ID: mdl-32302739

ABSTRACT

BACKGROUND: There is a growing concern that junk food has contributed to the childhood obesity epidemic. Recently, experimental studies suggested that the aryl hydrocarbon receptor (AHR) gene is strongly linked to western diet-induced obesity. AIM: This study investigated the potential role of AHR signaling in childhood obesity and the possible associations of the AHR-aryl hydrocarbon receptor repressor (AHRR)-cytochrome P450 1B1 (CYP1B1) axis with fatty acid homeostasis and the appetite-related hormones, leptin and ghrelin. SUBJECTS AND METHODS: The study included 80 children; 54 obese and 26 non-obese of matched age and sex. Demographic data, anthropometric measurements, and lipid profile were assessed. Expression of AHR signaling genes was analyzed in blood cells by qRT-PCR. Serum insulin, leptin and ghrelin levels were measured using ELISA. RESULTS: The statistical power of this study, calculated using G*Power version 3.1.9.2, was 90% (α = 0.05). AHR and CYP1B1 gene expression levels were upregulated in the obese group compared to controls, whereas AHRR, stearoyl-CoA desaturase 1 (SCD1), and peroxisome proliferator-activated receptor-γ2 (PPARγ2) were downregulated. Serum leptin correlated positively, while serum ghrelin correlated negatively with both AHR and CYP1B1. Stratification of obese children by age revealed more activated AHR signaling in younger than in older children. Receiver-operating-characteristic (ROC) analysis revealed that AHR, AHRR and CYP1B1 could discriminate between obese and normal weight children. Multivariate analysis showed that AHRR, CYP1B1 and ghrelin could be significant independent predictors of obesity. CONCLUSION: This study provides new insights into the molecular mechanisms contributing to childhood obesity by revealing alterations in the AHR-AHRR-CYP1B1 axis, which could serve as a promising therapeutic target for childhood obesity.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Obesity/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Child , Child, Preschool , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Female , Humans , Male , Receptors, Aryl Hydrocarbon/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction
10.
Cytokine ; 125: 154790, 2020 01.
Article in English | MEDLINE | ID: mdl-31400636

ABSTRACT

BACKGROUND: TNFRSF13B, TACI, is a member of the TNF receptor superfamily; it plays a key role in cancer cell proliferation and progression. METHOD: Influence of silencing of human cytokine receptors on cell viability was screened by Luminescent Cell Viability Assay, after transfection of the siRNA library to find the maximum cell death superhits in both triple-negative MDA-MB-231 and double-positive MCF7 breast cells. The mode of cell death was investigated by dual DNA fluorescence staining. The expression of mRNAs of TACI, BAFF, BAFF-R, and APRIL was explored by qPCR. Immunocytofluorescence analysis was used to evaluate changes in TACI, Bcl-2, TNFR2, cyclin-D2, and PCNA. NF-kB p65, cell cycle, and necrosis/apoptosis (late and early) were analyzed by flow cytometry. RESULTS: TACI is the most potent cytotoxic superhit resulted from high-throughput screening of the siRNA library, in both types of cells. Our findings indicated that silencing receptor TACI in both types of breast cancer cells led to significant cell death, after different intervals from siRNA transfection. Cell death mediators (TNFR2, Bcl-2, and NF-κB) were significantly decreased after TACI silencing. The key factors for cell division (Cyclin-D2 and PCNA) were significantly increased in silenced cells of both types but the cell cycle was arrested before the completion of mitosis. Expression of BAFF, BAFF-R and APRIL mRNA in TACI-silenced cells showed significant upregulation in MDA-MB-231 cells, while only BAFF-R and APRIL showed significant downregulation in MCF7 cells. CONCLUSION: TACI silencing can be a new and promising therapeutic target for mesenchymal-stem like triple-negative breast cancer subtype.


Subject(s)
Apoptosis/genetics , Cell Cycle/genetics , Gene Expression Regulation, Neoplastic/genetics , Transmembrane Activator and CAML Interactor Protein/metabolism , Triple Negative Breast Neoplasms/metabolism , B-Cell Activating Factor/genetics , B-Cell Activating Factor/metabolism , B-Cell Activation Factor Receptor/genetics , B-Cell Activation Factor Receptor/metabolism , Cell Survival/genetics , Cyclin D2/genetics , Cyclin D2/metabolism , Down-Regulation , Female , Flow Cytometry , Fluorescent Antibody Technique , Gene Silencing , High-Throughput Screening Assays , Humans , MCF-7 Cells , NF-kappa B/genetics , NF-kappa B/metabolism , Necrosis/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Transmembrane Activator and CAML Interactor Protein/genetics , Triple Negative Breast Neoplasms/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Up-Regulation
11.
J Cell Physiol ; 234(12): 22424-22438, 2019 12.
Article in English | MEDLINE | ID: mdl-31115047

ABSTRACT

Excessive drinking of alcohol has been frequently associated with gastric injury; however, its underlying molecular mechanisms have been inadequately investigated. Methyl palmitate (MP) has demonstrated marked hepato-, cardio- and pulmonary protective features; however, its effects on ethanol-induced gastric injury have not been studied. The aim of the present study was to evaluate the potential gastroprotective activity of MP against ethanol-evoked gastric mucosal damage in rats and associated molecular mechanisms, for example, mitogen-activated protein kinases (MAPKs), nuclear factor κB (NF-κB), and phosphoinositide 3 kinase/protein kinase B (PI3K/AKT) pathways. The rat stomachs were examined in terms of the inflammatory, oxidative, and apoptotic perturbations. Current data demonstrated that pretreatment with MP attenuated the gross gastric damage, scores of ulcer index, area of mucosal lesions and histopathology outcomes; actions which were similar to the reference antiulcer omeprazole. MP inhibited NF-κB expression, its nuclear translocation, and the expression of its downstream signals, for example, tumor necrosis factor-α and myeloperoxidase besides restoration of interleukin-10 levels. Western blot analysis revealed that MP counteracted the disruption of MAPKs signaling via lowering p-c-Jun N-terminal kinase 1/2 (p-JNK1/2) expression and restoring the phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) levels without affecting p-p38MAPK levels. Additionally, MP improved the antioxidant milieu via diminishing lipid peroxides and enhancing glutathione, glutathione peroxidase, total antioxidant capacity and mucosal nitric oxide. In the context of apoptosis, MP inhibited the cleavage of caspase-3 and poly(ADP-ribose)polymerase (PARP) and Bax protein expression with upregulating B cell lymphoma-2 expression (Bcl-2), thus, promoting gastric cellular survival. This was confirmed by MP activation of the PI3K/AKT pathway manifested by enhanced expression of PI3K p110α and p-AKT. Together, the present findings report the gastroprotective actions of MP mediated via its anti-inflammatory, antioxidant, and antiapoptotic actions. The underlying molecular mechanisms involve, at least partly, the modulation of MAPKs, NF-κB and PI3K/AKT transduction.


Subject(s)
Ethanol/toxicity , Mitogen-Activated Protein Kinase Kinases/metabolism , NF-kappa B/metabolism , Palmitates/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Mitogen-Activated Protein Kinase Kinases/genetics , NF-kappa B/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats , Stomach Diseases/chemically induced , Stomach Diseases/prevention & control
12.
Toxicol Appl Pharmacol ; 370: 117-130, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30878504

ABSTRACT

The exponentially increasing use of electromagnetic field (EMF)-emitting devices imposes substantial health burden on modern societies with particular concerns of male infertility. Limited studies have addressed the modulation of this risk by protective agents. We investigated the hazardous effects of rat exposure to EMF (900 MHz, 2 h/day for 8 weeks) on male fertility and evaluated the possible protective effect of the polyamine, spermine, against EMF-induced alterations. Exposure to EMF significantly decreased sperm count, viability and motility, and increased sperm deformities. EMF-exposed rats exhibited significant reductions in serum inhibin B and testosterone along with elevated activin A, follicle-stimulating hormone, luteinizing hormone and estradiol concentrations. Testicular steroidogenic acute regulatory protein (StAR), c-kit mRNA expression and testicular activities of the key androgenic enzymes 3ß- and 17ß-hydroxysteroid dehydrogenases were significantly attenuated following exposure to EMF. Exposure led to testicular lipid peroxidation, decreased catalase and glutathione peroxidase activities and triggered nuclear factor-kappa B p65, inducible nitric oxide synthase, cyclooxygenase-2 and caspase-3 overexpression. EMF-exposed rats showed testicular DNA damage as indicated by elevated comet parameters. Spermine administration (2.5 mg/Kg/day intraperitoneally for 8 weeks) prevented EMF-induced alterations in the sperm and hormone profiles, StAR and c-kit expression and androgenic enzyme activities. Spermine hampered EMF-induced oxidative, inflammatory, apoptotic and DNA perturbations. Histological and histomorphometric analysis of the testes supported all biochemical findings. In conclusion, rat exposure to EMF disrupts sperm and hormone profiles with underlying impairment of steroidogenesis and spermatogenesis. Spermine confers protection against EMF-associated testicular and reproductive aberrations, at least in part, via antioxidant, anti-inflammatory and anti-apoptotic mechanisms.


Subject(s)
Electromagnetic Fields/adverse effects , Infertility, Male/etiology , Infertility, Male/prevention & control , Spermine/administration & dosage , 17-Hydroxysteroid Dehydrogenases/metabolism , Animals , Apoptosis/drug effects , DNA Damage/drug effects , Gonadal Steroid Hormones/biosynthesis , Gonadal Steroid Hormones/blood , Infertility, Male/pathology , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Sperm Count , Sperm Motility/drug effects , Spermatogenesis/drug effects , Spermatozoa/abnormalities , Spermatozoa/drug effects , Spermatozoa/physiology , Testis/chemistry , Testis/metabolism , Testis/pathology
13.
J Adv Res ; 18: 101-112, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30847250

ABSTRACT

Epilepsy is one of the most well-known neurological conditions worldwide. One-third of adult epileptic patients do not respond to antiepileptic drugs or surgical treatment and therefore suffer from the resistant type of epilepsy. Stem cells have been given substantial consideration in the field of epilepsy therapeutics. The implication of pathologic vascular response in sustained seizures and the eminent role of endothelial progenitor cells (EPCs) in maintaining vascular integrity tempted us to investigate the potential therapeutic effects of EPCs in a pentylenetetrazole (PTZ)-induced rat model of epilepsy. Modulation of autophagy, a process that enables neurons to maintain an equilibrium of synthesis, degradation and subsequent reprocessing of cellular components, has been targeted. Intravenously administered EPCs homed into the hippocampus and amended the deficits in memory and locomotor activity. The cells mitigated neurological damage and the associated histopathological alterations and boosted the expression of brain-derived neurotrophic factor. EPCs corrected the perturbations in neurotransmitter activity and enhanced the expression of the downregulated autophagy proteins light chain protein-3 (LC-3), beclin-1, and autophagy-related gene-7 (ATG-7). Generally, these effects were comparable to those achieved by the reference antiepileptic drug, valproic acid. In conclusion, EPCs may confer therapeutic effects against epilepsy and its associated behavioural and biochemical abnormalities at least in part via the upregulation of autophagy. The study warrants further research in experimental and clinical settings to verify the prospect of using EPCs as a valid therapeutic strategy in patients with epilepsy.

14.
Biomed Pharmacother ; 112: 108584, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30784910

ABSTRACT

Stem cell therapy represents a promising therapeutic avenue for cardiac disorders, including heart failure. Although stem cell transplantation showed encouraging preliminary results, the outcomes of clinical studies are still unsatisfactory. This study aimed to compare the outcomes of two therapeutic approaches, in vivo co-delivery of sodium hydrogen sulfide (NaHS) concomitant with bone marrow-derived mesenchymal stem cell (BMSC) transplantation and in vitro preconditioning of BMSCs with NaHS, both of which are intended to promote the success of stem cell therapy in rats with isoprenaline-induced heart failure. Heart failure developed 4 weeks after the subcutaneous injection of isoprenaline (170 mg/kg) for 4 consecutive days. The in vivo approach involved the co-delivery of intraperitoneally administered NaHS concomitant with BMSC transplantation for a period of 14 days. The in vitro approach involved preconditioning BMSCs with NaHS for 30 min before transplantation. Compared to treatment with BMSCs alone, in vitro preconditioning of BMSCs with NaHS improved left ventricular function as measured by echocardiography and electrocardiography and enhanced stem cell homing, proliferation and differentiation as manifested by higher cardiac expression of GATA-4 and myocyte enhancer factor 2. Moreover, the measurement of cardiac transforming growth factor beta 1 levels and histopathological investigation revealed mitigated fibrosis and myocardial injury scores. Compared with BMSC therapy alone, the in vivo approach enhanced stem cell homing and differentiation, alleviated fibrosis and augmented vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) expression. In conclusion, NaHS can potentiate the efficiency of BMSC therapy for heart failure by in vitro preconditioning or in vivo co-delivery. The in vitro approach is superior with regard to improving cardiac function in addition to enhancing stem cell proliferation, while the in vivo approach is superior with regard to increasing cardiac VEGF and eNOS expression.


Subject(s)
Heart Failure/diagnostic imaging , Heart Failure/therapy , Hydrogen Sulfide/administration & dosage , Ischemic Preconditioning, Myocardial/methods , Animals , Combined Modality Therapy , Heart Failure/physiopathology , Male , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Random Allocation , Rats , Rats, Wistar , Treatment Outcome
15.
Int J Biochem Cell Biol ; 100: 11-21, 2018 07.
Article in English | MEDLINE | ID: mdl-29738828

ABSTRACT

Circulating miRNAs have recently emerged as attractive candidates for biomarker discovery. However, they have a variant distribution in circulation, and the diagnostic significance of their compartmentalization is yet to be elucidated. This study explored the time-course expression profile and the diagnostic potential of miRNAs-122a-5p, 192-5p, 193a-3p and 194-5p in exosomal and total serum compartments in two rat models of acute liver injury (ALI)1. Exosomes were isolated and characterized in terms of morphology, size and CD-63 surface marker expression. Exosomal, serum and hepatic miRNAs were quantified using q-RT-PCR. An inverse expression pattern of hepatic and total serum miRNAs was observed following acetaminophen or thioacetamide-induced liver injury. Conversely, exosomal miRNAs expression pattern varied according to the type of injury. Overall, ROC analysis revealed superior discriminatory ability of exosomal miRNA-122a-5p following either acetaminophen or thioacetamide injury with earlier diagnostic potential and a wider diagnostic window compared to the corresponding total serum counterpart. Moreover, exosomal miRNAs showed higher correlation with ALT activity in both models. In conclusion, exosomal miRNA-122a-5p shows higher diagnostic performance with a broader diagnostic time window and an earlier diagnostic potential than its serum counterpart in ALI. Furthermore, exosomal miRNAs-122a-5p, 192-5p and 193a-3p exhibit an injury-specific signature in ALI and can be used not only as diagnostic tools in liver injury but also to differentiate between different etiologies of injury.


Subject(s)
Exosomes/metabolism , Gene Expression Profiling , Liver/injuries , Liver/pathology , MicroRNAs/blood , MicroRNAs/genetics , Animals , Liver/metabolism , Male , Rats , Rats, Wistar , Time Factors
16.
Sci Rep ; 8(1): 4280, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29523851

ABSTRACT

The advent of angiotensin II type 1 receptor blockers (ARBs) as intriguing gastroprotective candidates and the superior pharmacokinetics and pharmacodynamics displayed by irbesartan compared to many other ARBs raised the interest to investigate its gastroprotective potential in a rat model of gastric injury. Irbesartan (50 mg/Kg) was orally administered to male Wistar rats once daily for 14 days; thereafter gastric injury was induced by indomethacin (60 mg/Kg, p.o). Irbesartan reduced gastric ulcer index, gastric acidity, and ameliorated indomethacin-induced gastric mucosal apoptotic and inflammatory aberrations, as demonstrated by hampering caspase-3, prostaglandin E2 and tumor necrosis factor-alpha levels and cyclooxygenase-2 mRNA expression. This ARB increased mucosal dimethylarginine dimethylaminohydrolase-1 (DDAH-1) gene expression and decreased elevated levels of matrix metalloproteinase-9, asymmetric dimethylarginine (ADMA), epidermal growth factor receptor (EGFR) mRNA and phosphorylated extracellular signal-regulated kinase 1 and 2 (pERK1/2). Histopathological evaluation corroborated biochemical findings. Overall efficacy of irbesartan was comparable to ranitidine, the widely used H2 receptor blocker. In conclusion, irbesartan exerts significant gastroprotection against indomethacin-induced mucosal damage via acid-inhibitory, anti-inflammatory, anti-apoptotic and extracellular matrix remodeling mechanisms that are probably mediated, at least partly, by down-regulating DDAH/ADMA and EGFR/ERK1/2 signaling.


Subject(s)
Amidohydrolases/metabolism , Anti-Inflammatory Agents/pharmacology , Arginine/analogs & derivatives , Irbesartan/pharmacology , MAP Kinase Signaling System , Peptic Ulcer/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Apoptosis , Arginine/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Indomethacin/toxicity , Irbesartan/therapeutic use , Male , Matrix Metalloproteinase 9/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Peptic Ulcer/etiology , Peptic Ulcer/metabolism , Rats , Rats, Wistar
17.
Toxicol Appl Pharmacol ; 334: 129-141, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28844848

ABSTRACT

This study investigated the effect of short-term oral exposure to nano-sized titanium dioxide (nTiO2) on Wistar rat prostate and testis, and the associating reproductive-related alterations. The study also evaluated the potential ameliorative effect of the natural flavonoid, morin, on nTiO2-induced aberrations. Intragastric administration of nTiO2 (50mg/kg/day for 1, 2 and 3weeks) increased testicular gamma-glutamyltransferase (γ-GT) activity and decreased testicular steroidogenic acute regulatory protein (StAR) and c-kit gene expression, serum testosterone level and sperm count. nTiO2-treated rats also exhibited prostatic and testicular altered glutathione levels, elevated TNF-α levels, up-regulated Fas, Bax and caspase-3 gene expression, down-regulated Bcl-2 gene expression and enhanced prostatic lipid peroxidation. Sperm malformation and elevated testicular acid phosphatase (ACP) activity and malondialdehyde level, serum prostatic acid phosphatase activity, prostate specific antigen (PSA), gonadotrophin and estradiol levels occurred after the 2 and 3week regimens. Morin (30mg/kg/day administered intragastrically for 5weeks) mitigated nTiO2-induced prostatic and testicular injury as evidenced by lowering serum PSA level, testicular γ-GT and ACP activities and TNF-α level, along with hampering both intrinsic and extrinsic apoptotic pathways. Moreover, morin alleviated prostatic lipid peroxidation, raised prostatic glutathione level, and relieved testicular reductive stress. Additionally, morin increased testicular StAR and c-kit mRNA expression, raised the sperm count, reduced sperm deformities and modified the altered hormone profile. Histopathological evaluation supported the biochemical findings. In conclusion, morin could ameliorate nTiO2-induced prostatic and testicular injury and the corresponding reproductive-related aberrations via redox regulatory, anti-inflammatory and anti-apoptotic mechanisms, promoting steroidogenesis and spermatogenesis, and improving sperm count and morphology.


Subject(s)
Flavonoids/therapeutic use , Metal Nanoparticles/toxicity , Prostate/drug effects , Testis/drug effects , Titanium/toxicity , Animals , Antioxidants/administration & dosage , Antioxidants/therapeutic use , Biomarkers , Flavonoids/administration & dosage , Gene Expression Regulation/drug effects , Male , Metal Nanoparticles/chemistry , Oxidative Stress/drug effects , Prostate/pathology , Prostatic Diseases/chemically induced , Prostatic Diseases/drug therapy , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Random Allocation , Rats , Rats, Wistar , Sperm Count , Testicular Diseases/chemically induced , Testicular Diseases/drug therapy , Testis/pathology , Titanium/chemistry
18.
Nutr Metab (Lond) ; 13: 68, 2016.
Article in English | MEDLINE | ID: mdl-27777603

ABSTRACT

BACKGROUND: According to the WHO report in 2015, obesity is the fifth leading cause of death worldwide, and the prevalence of Egyptian female obesity is 37.5 %. Since obesity is highly influenced by genetics, and adipose tissue renin-angiotensin system is over-activated in obesity, the effect of angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism on obesity and related disorders was studied in several populations, because of its effect on ACE activity. Our objective was to study the association of ACE I/D polymorphism with obesity and certain related disorders, namely hypertension, insulin resistance and metabolic syndrome, in Egyptian females. METHODS: Eighty female volunteers were recruited, blood pressure and body measurements were recorded and a fasting blood sample was obtained for the quantitation of glucose, lipid profile, insulin, leptin and identification of ACE I/D polymorphs. Subjects were grouped based on hypertension and obesity states. Comparisons of continuous parameters were made with independent sample t-test between two groups. The frequencies of ACE genotypes and alleles, and the association between gene polymorphism and metabolic parameters were assessed using chi-square or Fisher's exact test. RESULTS: Genotype frequencies were in Hardy-Weinberg equilibrium for all groups. Genotype distribution did not differ significantly between controls and cases of all the studied disorders. Although DD carriers had apparently higher parameters of blood pressure, lipid profile and insulin resistance, only diastolic blood pressure was almost significant (p = 0.057). I-carriers were significantly less susceptible to hypertension than DD carriers having normal waist/hip ratio (p = 0.007, OR = 17.29, CI = 1.81-164.96) and normal conicity index (p = 0.024, OR = 7.00, CI = 1.36-35.93). In DD genotype carriers, a significant association was found between insulin resistance and high body mass index (p = 0.004, OR = 8.89, CI = 1.94-40.71), waist circumference (p = 0.003, OR = 9.63, CI = 2.14-43.36) and waist/height ratio (p = 0.034, OR = 6.86, CI = 1.25-37.61), although the variations in percentages between DD and I-carriers were not high enough to conclude an effect of ACE I/D on such an association. CONCLUSIONS: In this sample of Egyptian females, ACE I/D polymorphism was not significantly associated with obesity nor with any of its related disorders studied. The I allele seemed protective against hypertension in subjects with normal, not high, waist/hip ratio and conicity index compared to DD genotype carriers.

19.
PLoS One ; 11(3): e0151901, 2016.
Article in English | MEDLINE | ID: mdl-26999517

ABSTRACT

BACKGROUND: Breast cancer is reported to cause the highest mortality among female cancer patients. Previous studies have explored the association of silent mating-type information regulator 2 homolog 1 (SIRT1) gene expression with prognosis in breast cancer. However, no studies exist, so far, on the role of SIRT1 gene polymorphism in breast cancer risk or prognosis. The present study aimed to assess the association between SIRT1 gene polymorphisms and breast cancer in Egyptians. METHODS: The study comprised 980 Egyptian females divided into a breast cancer group (541 patients) and a healthy control group (439 subjects). SIRT1 gene single nucleotide polymorphisms (SNPs) rs3758391, rs3740051 and rs12778366 were genotyped using real-time polymerase chain reaction (RT-PCR). Allelic and genotypic frequencies were determined in both groups and association with breast cancer and clinicopathological characteristics was assessed. RESULTS: Breast cancer patients exhibited elevated serum SIRT1 levels which varied among different tumor grades. SIRT1 rs3758391 and rs12778366 TT genotypes were more frequent, exhibited higher SIRT1 levels than CC and CT genotypes and were associated with histologic grade and lymph node status. SIRT1 rs12778366 TT genotype also correlated with negative estrogen receptor (ER) and progesterone receptor (PR) statuses. The T allele frequency for both SNPs was higher in breast cancer patients than in normal subjects. Combined GG and AG genotypes of rs3740051 were more frequent, showed higher serum SIRT1 levels than the AA genotype, and were associated with ER and PR expression. Furthermore, inheritance of the G allele was associated with breast cancer. CONCLUSIONS: Our findings reveal that rs3758391 and rs12778366 polymorphisms of SIRT1 gene are associated with breast cancer risk and prognosis in the Egyptian population.


Subject(s)
Breast Neoplasms/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , Sirtuin 1/genetics , Adult , Aged , Breast Neoplasms/pathology , Case-Control Studies , Demography , Egypt , Female , Gene Frequency/genetics , Humans , Linkage Disequilibrium/genetics , Middle Aged , Sirtuin 1/blood
20.
Chem Biol Interact ; 229: 26-35, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25637687

ABSTRACT

The present study investigated the gastroprotective effect of crocin in ethanol-induced gastric injury in rats. Rats were allocated into a normal group, an ulcer group, a crocin-treated group, an ulcer group pretreated with crocin, and an ulcer group pretreated with omeprazole as a reference anti-ulcer drug. Rats were sacrificed 3h after ethanol administration. Prophylactic administration of crocin (50mg/kg/day, i.p.) for 3 consecutive days before the administration of 70% ethanol (10 ml/kg, orally) resulted in significant gastroprotection compared to ethanol-ulcerated rats as manifested by significant reduction in the gastric ulcer index. Crocin pretreatment increased ethanol-lowered levels of gastric juice mucin and mucosal prostaglandin E2 (PGE2) and interleukin-6 (IL-6). Moreover, crocin significantly decreased ethanol-elevated tumor necrosis factor-alpha (TNF-α) level, myeloperoxidase activity and heat shock protein 70 mRNA and protein levels. It also restored ethanol-altered mucosal levels of glutathione, malondialdehyde and superoxide dismutase activity. Furthermore, crocin-pretreatment alleviated ethanol-induced mucosal apoptosis as revealed by significant down-regulation of cytochrome c and caspase-3 mRNA expression, significant decrease in caspase-3 activity and mitigated DNA fragmentation as indicated by significant decrements in comet parameters. The protective efficacy of crocin was further supported by histological assessment. No significant difference was observed between crocin and omeprazole (20mg/kg orally 1h before ethanol administration) regarding their mucin-secretagogue and antioxidant effects, as well as their effects on TNF-α, IL-6 and cytochrome c. On the other hand, omeprazole was superior in enhancing PGE2 level and in alleviating neutrophil infiltration, caspase-3 activation and DNA fragmentation. Conclusively, crocin protects rat gastric mucosa against ethanol-induced injury via anti-inflammatory, anti-oxidative, anti-apoptotic and mucin-secretagogue mechanisms that are probably mediated by enhanced PGE2 release.


Subject(s)
Anti-Ulcer Agents/therapeutic use , Carotenoids/therapeutic use , Ethanol/toxicity , Gastric Mucosa/drug effects , Protective Agents/therapeutic use , Stomach Ulcer/chemically induced , Animals , Apoptosis/drug effects , Cytokines/analysis , Cytokines/immunology , Gastric Mucosa/immunology , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Stomach Ulcer/immunology , Stomach Ulcer/metabolism , Stomach Ulcer/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...